Effektivität und Effizienz der CT-Koloskopie im Vergleich zur konventionellen Koloskopie in der Dickdarmkrebsdiagnose und -früherkennung

Heidi Stürzlinger, Dieter Genser, Cora Hiebinger, Friederike Windisch
Effektivität und Effizienz der CT-Koloskopie im Vergleich zur konventionellen Koloskopie in der Dickdarmkrebsdiagnose und -früherkennung

Heidi Stürzlinger
Dieter Genser
Cora Hiebinger
Friederike Windisch

ÖBIG Forschungs- und Planungsgesellschaft mbH, Wien
Wir bitten um Beachtung

Herausgeben vom
Deutsches Institut für Medizinische Dokumentation und Information (DIMDI), Köln

Das DIMDI ist ein Institut im Geschäftsbereich des Bundesministeriums für Gesundheit (BMG)

Kontakt
DAHTA@DIMDI
Deutsche Agentur für Health Technology Assessment des
Deutschen Instituts für Medizinische Dokumentation und Information
Waisenhausgasse 36-38a
50676 Köln
Tel: +49 221 4724-525
Fax: +49 2214724-340
E-Mail: dahta@dimdi.de
www.dimdi.de

Schriftenreihe Health Technology Assessment, Bd. 82
ISSN: 1864-9645
1. Auflage 2009
DOI: 10.3205/hta000064L
URN: urn:nbn:de:0183-hta000064L1

Inhaltsverzeichnis
1 Verzeichnisse ... V
 1.1 Tabellenverzeichnis ... V
 1.2 Abbildungsverzeichnis .. VI
 1.3 Abkürzungsverzeichnis .. VI
 1.4 Glossar.. VIII
2 Zusammenfassung .. 1
3 Abstract... 2
4 Kurzfassung .. 3
 4.1 Gesundheitspolitischer Hintergrund .. 3
 4.2 Wissenschaftlicher Hintergrund .. 3
 4.3 Forschungsfragen .. 3
 4.4 Methodik ... 4
 4.5 Ergebnisse ... 4
 4.6 Diskussion .. 6
 4.7 Schlussfolgerung/Empfehlung ... 7
5 Summary ... 9
 5.1 Health political background .. 9
 5.2 Scientific background ... 9
 5.3 Research questions ... 9
 5.4 Methods .. 9
 5.5 Results ... 10
 5.6 Discussion ... 12
 5.7 Conclusions/Recommendations .. 13
6 Hauptdokument .. 14
 6.1 Gesundheitspolitischer Hintergrund .. 14
 6.2 Wissenschaftlicher Hintergrund .. 15
 6.2.1 Dickdarmkrebs/kolorektales Karzinom (KRK) ... 15
 6.2.1.1 Epidemiologie ... 15
 6.2.1.2 Ätiologie, Pathogenese und Risikofaktoren ... 15
 6.2.1.3 Klinik, Diagnostik, Therapie und Prognose ... 15
 6.2.1.4 Prävention und Screening .. 16
 6.2.1.5 Bildgebende Diagnose- und Screeningverfahren ... 16
 6.2.1.5.1 Konventionelle Koloskopie .. 16
 6.2.1.5.2 Computertomografie-Koloskopie (CTC, virtuelle Koloskopie, CT-Kolografie) 17
 6.3 Forschungsfragen .. 18
 6.4 Methodik .. 18
 6.4.1 Suchstrategie und Datenquellen .. 18
 6.4.2 Selektionskriterien .. 19
 6.4.2.1 Erstselektion ... 19
 6.4.2.2 Zweitselektion .. 20
 6.4.2.2.1 Volltexte für die medizinische Bewertung .. 20
 6.4.2.2.2 Volltexte für die ökonomische Bewertung .. 20
 6.4.2.2.3 Ethische, soziale und juristische Aspekte .. 21
6.4.3 Bewertung der Studienqualität ... 21
 6.4.3.1 Volltexte für die medizinische Bewertung .. 21
 6.4.3.2 Volltexte für die ökonomische Bewertung .. 22
6.4.4 Datenauswertung und Datensynthese .. 23
 6.4.4.1 Volltexte für die medizinische Bewertung .. 23
 6.4.4.2 Volltexte für die ökonomische Bewertung .. 23
 6.4.4.3 Ethische, soziale und juristische Aspekte .. 23
6.5 Ergebnisse .. 23
 6.5.1 Ergebnisse der Erstselektion ... 23
 6.5.2 Ergebnisse der Zweitselektion ... 23
 6.5.3 Ergebnisse der Handsuche .. 25
 6.5.4 Darstellung des Selektionsprozesses ... 25
 6.5.5 Ergebnisse der medizinischen Bewertung ... 25
 6.5.5.1 Metaanalysen und systematische Übersichtsarbeiten 26
 6.5.5.2 Primärstudien .. 31
 6.5.5.2.1 Primärstudien mit mehr als 500 Probanden/Patienten 31
 6.5.5.2.2 Primärstudien mit weniger als 500 Probanden/Patienten 34
 6.5.6 Ergebnisse der ökonomischen Bewertung ... 36
 6.5.6.1 Beschreibung der Modellrechnungen und ihrer Ergebnisse 37
 6.5.6.1.1 Bewertung der Studienqualität ... 38
 6.5.6.1.2 Ergebnisse ... 39
 6.5.6.2 Limitationen der Modellrechnungen und Zusammenfassung der
 Ergebnisse .. 44
 6.5.6.3 Übertragbarkeit der Ergebnisse auf Deutschland 47
 6.5.7 Ethische/soziale Aspekte .. 49
 6.5.7.1 Allgemeine Aspekte .. 50
 6.5.7.2 Komplikationsrate .. 50
 6.5.7.3 Akzeptanz der konventionellen Koloskopie 50
 6.5.7.4 Patientenerfahrungen und -präferenzen .. 51
 6.5.8 Juristische Aspekte ... 52
6.6 Diskussion .. 53
6.7 Schlussfolgerung/Empfehlung ... 56
7 Literaturverzeichnis ... 58
8 Anhang .. 80
 8.1 Schlagworte .. 80
 8.2 Datenbanken ... 80
 8.3 Suchstrategie ... 80
 8.4 Tabellen ... 88
 8.4.1 Tabellen zur medizinischen Bewertung ... 88
 8.4.1.1 Metaanalysen und systematische Übersichtsarbeiten 88
 8.4.1.2 Primärstudien mit mehr als 500 Patienten 96
 8.4.2 Primärstudien mit weniger als 500 Patienten 108
 8.4.3 Tabellen zur ökonomischen Bewertung ... 149
9 Danksagung .. 164
1 Verzeichnisse

1.1 Tabellenverzeichnis

Tabelle 1: Ein- und Ausschlusskriterien zur Selektion der Zusammenfassungen 19
Tabelle 2: Selektionskriterien für die medizinischen Volltexte .. 20
Tabelle 3: Selektionskriterien für die ökonomischen Volltexte .. 20
Tabelle 4: Ausgeschlossene Literatur .. 24
Tabelle 5: Metaanalysen und systematische Übersichtsarbeiten .. 26
Tabelle 6: Primärstudien mit mehr als 500 Probanden/Patienten ... 31
Tabelle 7: Primärstudien mit weniger als 500 Probanden/Patienten .. 34
Tabelle 8: In die Bewertung eingeschlossene ökonomische Studien ... 36
Tabelle 9: Verglichene Untersuchungsalternativen .. 37
Tabelle 10: Eingeschlossene Kosten .. 38
Tabelle 11: Ergebnisse der Modellrechnungen im Basisszenario .. 40
Tabelle 12: Ergebnisse der Sensitivitätsanalysen .. 41
Tabelle 13: Vergleich der Untersuchungskosten für CTC und konventionelle Koloskopie in den Modellrechnungen ... 43
Tabelle 14: Vergleich der Eingangswerte für die Compliance .. 44
Tabelle 15: Vergleich der Werte für Sensitivität und Spezifität der CTC bzw. Koloskopie in den Modellrechnungen ... 46
Tabelle 16: Volltexte, die ethische und soziale Aspekte behandeln .. 49
Tabelle 17: Volltexte, die juristische Aspekte behandeln .. 52
Tabelle 18: Suchstrategie in den Literaturdatenbanken ... 80
Tabelle 19: Banerjee et al. 2006 ... 88
Tabelle 20: Halligan et al. 2005 ... 88
Tabelle 21: Mulhall et al. 2005 ... 90
Tabelle 22: Blue Cross Blue Shield Association 2004 .. 92
Tabelle 23: Medical Advisory Secretary, Ontario Ministry of Health and Long-Term Care 2003 93
Tabelle 24: Sosna et al. 2003 .. 94
Tabelle 25: Rockey et al. 2005 .. 96
Tabelle 26: Cotton et al. 2004 .. 99
Tabelle 27: Johnson et al. 2003 .. 101
Tabelle 28: Pickhardt et al. 2003 inklusive zwei Folgepublikationen ... 104
Tabelle 29: MacCarty et al. 2006 ... 108
Tabelle 30: Reuterskiöld et al. 2006 ... 110
Tabelle 31: Arnesen et al. 2005 .. 112
Tabelle 32: Iannaccone et al. 2005 .. 114
Tabelle 33: Park et al. 2005 .. 118
Tabelle 34: Wessling et al. 2005 .. 119
Tabelle 35: Bruzzi et al. 2004 .. 121
Tabelle 36: Cohnen et al. 2004 .. 123
Tabelle 37: Hoppe et al. 2004 .. 124
Tabelle 38: Iannaccone et al. 2004 .. 127
Tabelle 39: Macari et al. 2004 .. 130
Tabelle 40: Macari et al. 2004 .. 131
Tabelle 41: Van Gelder et al. 2004 ... 133
Tabelle 42: Vogt et al. 2004 ... 136
Tabelle 43: Iannaccone et al. 2003 .. 137
Effektivität und Effizienz der CT-Koloskopie im Vergleich zur konventionellen Koloskopie in der Darmkrebsdiagnose und -früherkennung

Fortsetzung: Tabellenverzeichnis
Tabelle 44: Munikrishnan et al. 2003 .. 139
Tabelle 45: Ginnerup Pedersen et al. 2003 ... 142
Tabelle 46: Pineau et al. 2003 ... 144
Tabelle 47: Thomeer et al. 2003 .. 146
Tabelle 48: Hassan et al. 2007 .. 149
Tabelle 49: Vijan et al. 2007 .. 151
Tabelle 50: Ladabaum et al. 2005 .. 155
Tabelle 51: Heitmann et al. 2005 ... 157
Tabelle 52: Ladabaum et al. 2004 .. 160

1.2 Abbildungsverzeichnis
Abbildung 1: Darstellung des Selektionsprozesses .. 25

1.3 Abkürzungsverzeichnis
Abs. Absatz
ACRIN National CT Colonography Trial (Studienbezeichnung)
AGA Amerikanische Gesellschaft für Gastroenterologie
AOK Allgemeine Ortskrankenkasse
BRD Bundesrepublik Deutschland
CAD Canadian Dollar (dt.: Kanadischer Dollar)
CAD Computer assisted diagnosis (dt.: Computerassistierte Detektion)
CCTR Cochrane Central Register of Controlled Trials
Co. Company
CO₂ Kohlenstoffdioxid
CT Computertomografie
CTC Computed tomography colonoscopy (dt.: Computertomografie-Koloskopie)
DAHTA@DIMDI Deutsche Agentur für HTA des DIMDI
DIMDI Deutsches Institut für Medizinische Dokumentation und Information
EBM Einheitlicher Bewertungsmaßstab
ESGE/UEGF European Society of Gastrointestinal Endoscopy (dt.: United European Gastroenterology Federation)
DNA Desoxyribonukleinsäure
FAP Familiäre adenomatöse Polyposis
FN False negative (dt.: falsch negativ)
FOBT Fäkaler okkulter Bluttest
GÖG Gesundheit Österreich GmbH
h Stunden
HNPCC Hereditäres kolorektales Karzinom ohne Polyposis
HTA Health Technology Assessment
HU Hounsfield Units
Fortsetzung: Abkürzungsverzeichnis

Inc. Incorporated
J. Jahre
K. A. Keine Angaben
k. nähere A. Keine näheren Angaben
KI Konfidenzintervall
KRK Kolorektales Karzinom
kV Kilovolt
kVp Kilovolt Power
Ltd. Limited
MA Metaanalyse
ma Milliampere
mAs Milliamperesekunde
MDCT Multidetektorcomputertomografie
mEq Milliequivalent
mGy milliGray
mSv Millisievert
n Anzahl
N. N. No name
NPV Negative predictive value (dt.: negativer prädiktiver Wert)
ÖBIG Österreichisches Bundesinstitut für Gesundheitswesen
ÖBIG-FP ÖBIG Forschungs- und Planungsgesellschaft mbH
p p-Wert
P. Polypen
PPV Positive predictive value (dt.: positiver prädiktiver Wert)
QALY Quality-adjusted life-year
ROC Receiver Operating Characteristic
RöV Röntgenverordnung
SAS Softwarebezeichnung
sek Sekunden
SGB V Sozialgesetzbuch, Fünftes Buch (V)
SPSS Softwarebezeichnung
SR Systematic review (dt.: systematische Übersichtsarbeit)
SROC Summary Receiver-operating characteristics curves
TN True negative (dt.: richtig negativ)
TP True positive (dt.: richtig positiv)
UK United Kingdom (dt.: Vereinigtes Königreich)
UICC International union against cancer
USA United States of America (dt.: Vereinigte Staaten von Amerika)
USD US-amerikanischer Dollar
2-D Zweidimensional
3-D Dreidimensional
1.4 Glossar

Adenom
Vom Epithelgewebe von Drüsen oder Schleimhauten (z. B. des Magen-Darm- oder Respirationstrakts) ausgehender, primär benigner (gutartiger) Tumor, der maligne entarten (bösartig werden) kann. Man unterscheidet nach histologischem Befund tubuläre Adenome (enthalten mit Epithelgewebe ausgekleidete Kanäle), villöse Adenome (mit Ausbildung zottiger Epithelproliferationen) und tubulo-villöse Adenome (Mischform aus tubulären und villösen Anteilen).

Adenom-Karzinom-Sequenz
Bezeichnung für die Reihenfolge der genetischen Veränderungen (Mutationen bzw. Verlust von Genen), durch die aus normaler Dickdarmschleimhaut ein kolorektales Karzinom entsteht.

Anterograd
In regulärer Richtung laufend.

Chromoendoskopie
Endoskopisches Verfahren, bei dem durch Aufsprühen von Vitalfarbstoffen (z. B. Lugol- oder Methylenblaulösung) die diagnostische Treffsicherheit insbesondere bei kleinen, flachen oder eingesunkenen Läsionen im Magen-Darm-Trakt erhöht werden soll.

Distension
Auf- bzw. Ausdehnung.

Divertikel
Angenborene oder erworbene, pilz-, birnen- oder sackförmige Ausstülpung umschriebener Wandteile eines Hohlorgans.

Drittzahler
Vom Englischen „third party payer“: Gemeint sind die Zahler von öffentlichen Gesundheitsleistungen, z. B. Sozialversicherung, staatlicher Gesundheitsdienst etc.

Dysplasie
Unterschiedlich schwere Zellatypien in Verbindung mit einem gestörten Epithelaufbau.

Endoskop
Für die Endoskopie verwendetes röhren- oder schlauchförmiges Instrument.

Endoskopie
Ausleuchtung und Inspektion von Körperhohlräumen und Hohlorganen.

Falsch negativ (FN)
Der Anteil der vom infrage stehenden Verfahren als negativ be- fundeten Ergebnisse an den vom Gold standard als positiv erkannten Ergebnissen.

Falsch positiv (FP)
Der Anteil der vom infrage stehenden Verfahren als positiv be- fundeten Ergebnisse an den vom Gold standard als negativ erkannten Ergebnissen.

Follow-up
Beobachtungszeit, Folgezeitraum.

„Fly through“
Virtuell-endoskopischer Untersuchungsgang.

Gewonnene Lebensjahre
Gewonnene oder gerettete Lebensjahre sind Outputparameter in der Kostenwirksamkeitsanalyse. Hier wird für eine Behandlung die Anzahl der Jahre bestimmt, die ein Patient ab einem bestimmten Zeitpunkt, z. B. dem Therapiebeginn, im Durchschnitt überlebt. Irrelevante hierbei die Qualität der hinzugewonnenen Lebensjahre, weshalb das Konzept der qualitätsbereinigten Lebensjahre (QALY) entwickelt wurde.
Fortsetzung: Glossar

<table>
<thead>
<tr>
<th>Begriff</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goldstandard</td>
<td>Vgl. Referenzstandard.</td>
</tr>
<tr>
<td>Haustren (Mehrzahl: Haustreng)</td>
<td>Ausbuchtung der Dickdarmwand.</td>
</tr>
<tr>
<td>Hematochezie</td>
<td>Beimengung von rotem Blut im Stuhl.</td>
</tr>
<tr>
<td>Intermittierend</td>
<td>Zeitweilig aussetzend.</td>
</tr>
<tr>
<td>In vitro</td>
<td>Im Reagenzglas, d. h. außerhalb des lebenden Organismus.</td>
</tr>
<tr>
<td>In vivo</td>
<td>In einem lebenden Organismus.</td>
</tr>
<tr>
<td>Karzinom</td>
<td>Vom Epithel ausgehender maligner Tumor.</td>
</tr>
<tr>
<td>Kohortenstudie</td>
<td>Nach vom Studienleiter festgelegten Kriterien werden die Patienten in zwei Gruppen eingeteilt (z. B. Patienten, die sich der Therapie unterziehen, und Patienten, die die Therapie nicht machen).</td>
</tr>
<tr>
<td>Kollimation</td>
<td>Detektorkonfiguration, die auch die Einstellung der Blendeneinrichtung beschreibt (technischer Begriff der Computertomografie-Koloskopie).</td>
</tr>
<tr>
<td>Kolorektales Karzinom (KRK)</td>
<td>Krebs des Dickdarms oder Rektums.</td>
</tr>
<tr>
<td>Koloskopie</td>
<td>Dickdarmspiegelung.</td>
</tr>
<tr>
<td>Konfidenzintervall (CI)</td>
<td>Das Konfidenzintervall (auch „Vertrauensbereich“) hat die Eigenschaft, dass es mit der vorgegebenen Sicherheitswahrscheinlichkeit (z. B. 95 %) den unbekannten „wahren“ Wert enthält.</td>
</tr>
<tr>
<td>Kostenwirksamkeitsanalyse</td>
<td>Analyseform, die monetäre Kosten einer Intervention mit dem nichtmonetär bewerteten Behandlungserfolg vergleicht, z. B. pro gewonnenes oder gerettetes Lebensjahr oder pro qualitätsbereinigtes Lebensjahr.</td>
</tr>
<tr>
<td>Metaanalyse</td>
<td>Wie beim systematischen Review werden alle relevanten Originalarbeiten gesucht, darüber hinaus werden die Ergebnisse der Einzelstudien mit statistischen Methoden zusammengefasst.</td>
</tr>
<tr>
<td>Mukosa</td>
<td>Schleimhaut.</td>
</tr>
<tr>
<td>Morbidität</td>
<td>Krankheitshäufigkeit, Anzahl von Erkrankungen innerhalb einer Population.</td>
</tr>
</tbody>
</table>
Fortsetzung: Glossar

Multidetektorcomputertomografie (MDCT) Computertomografie mit Geräten, die mehrere Röntgendetektoreinheiten (Mehrzeiler) parallel einsetzen und so gleichzeitig mehrere Schichten aufnehmen können.

Narrativer Review Autor/Autorenteam beschreibt auf der Basis der ihm/bzw. dem Team bekannten Literatur den Stand des Wissens.

Negativer prädiktiver Wert Anteil der richtig negativen Befunde an allen vom infrage stehenden Verfahren als negativ erkannten Befunden.

Perforation Durchbruch. Eröffnung einer geschlossenen Körperhöhle bzw. eines Hohlrangs.

Pitch Spiralausziehfaktor bzw. Tischvorschub pro Rotation, dividiert durch Schichtdicke (technischer Begriff der Computertomografie-Koloskopie).

Polypektomie Abtragung eines Polypen meist im Magen-Darm-Bereich mit einem Endoskop.

Polyposis Vorkommen zahlreicher Polypen in einem Hohlrang.

Positiver prädiktiver Wert Anteil der richtig positiven Befunde an allen vom infrage stehenden Verfahren als positiv erkannten Befunden.

Prävention Vorbeugende Maßnahme.

Primärprävention Verhinderung der Entstehung von Krankheiten.

Proximal In der Nähe bzw. rumpfwärts gelegener Teil.

P-Wert Der p-Wert gibt für verschiedene statistische Tests jeweils die Wahrscheinlichkeit an, mit der die getroffene Hypothese zutrifft, vgl. „statistisch signifikant“.

Qualitätsbereinigte Lebensjahre (QALY) Für Wirtschaftlichkeitsuntersuchungen zur Beschreibung der quantitativen Dimension der Lebensqualität eingesetzt. Dabei wird die Lebensqualität in eine Skala zwischen 1 und 0 eingereiht.

Randomisation/verborgene Therapiezuweisung Zuordnung von Studienteilnehmern zu Versuchs- und Kontrollgruppen nach einem Zufallsprinzip.

Randomisierte kontrollierte Studie (RCT) Die Patienten (mit einem bestimmten Krankheitsbild) werden durch Randomisierung in zwei Gruppen geteilt, von denen eine die Therapie bekommt, die andere nicht.

Referenzstandard Das zum gegebenen Zeitpunkt beste und zuverlässigste Verfahren zum Nachweis oder Ausschluss einer Erkrankung.

Rektum Ca. 15 cm langer Enddarmabschnitt, der aus dem Kolon sigmoid-eum hervorgeht und in den Analkanal übergeht.
Fortsetzung: Glossar

Retrograd
Von anal her (bei Darmspiegelung).

Richtig negativ (TN)
Der Anteil der vom infrage stehenden Verfahren als negativ be- fundeten Ergebnisse an den vom Goldstandard als negativ erkannten.

Richtig positiv (TP)
Der Anteil der vom infrage stehenden Verfahren als positiv be- fundeten Ergebnisse an den vom Goldstandard als positiv erkannten.

ROC-Kurve
ROC: receiver operating characteristic; Darstellung von Sensitivität und Spezifität bei verschiedenen Referenzwerten; dazu werden für verschiedene Referenzwerte die korrespondierenden Werte für Spezifität und Sensitivität berechnet und gegeneinander aufgetragen: Sensitivität und Spezifität sind abhängig von der gesetzten Referenzgrenze (auch Diskriminanzschwelle oder englisch operating point bzw. cut-off point genannt).

Sensitivität
Fähigkeit eines diagnostischen Tests, Personen mit der fraglichen Erkrankung vollständig herauszufiltern; ist definiert als das Verhältnis der Personen mit positivem Testergebnis zu den tatsächlich Kranken.

Sensitivitätsanalyse
Untersuchung, wie sensibel die Ergebnisse einer Modellrechnung auf Veränderung eines Eingangsparameters reagieren.

Spezifität
Fähigkeit eines diagnostischen Tests, ausschließlich Personen mit fraglichen Erkrankungen zu erfassen; ist definiert als das Verhältnis der Personen mit negativem Testergebnis zu den tatsächlich Gesunden.

Staging
Bestimmung der Ausdehnung eines bösartigen Tumors und Zu- ordnung zu einem Stadium.

Standardabweichung
Maß für die Streuung der Werte. Das Quadrat der Standardabweichung (die Varianz) ist die durchschnittliche quadratische Abweichung der Einzelwerte vom Mittelwert.

Statistisch signifikant
Ein Ergebnis wird in der Regel dann als statistisch signifikant bezeichnet, wenn der p-Wert (siehe dort) ≤ 0,05 ist.

Stuhlmarkierung (stool tagging)

Systematischer Review/Übersichtsarbeit
Der aktuelle Wissenstand wird auf der Basis einer systematischen Literatursuche – nach strengen wissenschaftlichen Kriterien – zusammengetragen und interpretiert.

Zoomendoskopie
Vergrößerungsendoskopie.
2 Zusammenfassung

Gesundheitspolitischer Hintergrund

Darmkrebskrankungen/ kolorektale Karzinome (KRK) stellen in Deutschland für beide Geschlechter die zweithäufigste Krebskrankung und Krebstodesursache dar. Verschiedene Verfahren zur Früherkennung von KRK stehen zur Verfügung, darunter die konventionelle Koloskopie, die im Rahmen der Krebsfrüherkennung erstattet wird, sowie die Computertomografie-Koloskopie (CTC), die derzeit nicht erstattet wird.

Wissenschaftlicher Hintergrund

Die CTC ist ein rein diagnostisches Verfahren, das ein geringeres Komplikationsrisiko durch Perforation aufweist als die konventionelle Koloskopie, jedoch als Röntgenverfahren mit einer Strahlenbelastung behaftet ist. Die konventionelle Koloskopie gilt aufgrund ihrer hohen Sensitivität und Spezifität für das Auffinden von Adenomen und KRK als Goldstandard und bietet den Vorteil, neben erweiterten diagnostischen auch therapeutischen Maßnahmen zu ermöglichen.

Fragenstellung

In diesem HTA-Bericht soll geklärt werden, welche Effektivität und Effizienz die CTC im Vergleich zur konventionellen Koloskopie in der Früherkennung und Diagnose von Dickdarmkrebs und/oder Vorstufen desselben hat und welche ethischen und juristischen Aspekte zu beachten sind.

Methodik

Ergebnisse

Die Ergebnisse zur Effektivität der CTC in Diagnostik und Screening von Dickdarmkrebs und/oder Vorstufen sind teilweise vielversprechend, aber sehr heterogen. Sowohl in der Diagnostik als auch zum Screening kann die CTC deshalb hinsichtlich ihrer Erkennungsgüte derzeit nicht als gleichwertige Alternative zur konventionellen Koloskopie gesehen werden. Für die Heterogenität der Ergebnisse sind technische (Gerätetyp, Einstellungen), patienten- (Vorbereitung) und befunderbezogene (Ausbildung) Faktoren verantwortlich. Einzelne Indikationen zur Diagnostik des KRK mittels CTC liegen vor. Ökonomische Ergebnisse zum Verfahrensvergleich in der Diagnostik liegen nicht vor. Zur Kosteneffektivität eines CTC-Screenings finden sich ausländische Modellrechnungen, aufgrund derer das CTC-Screening zwar als kosteneffektiv zur Option „kein Screening“ bezeichnet werden kann, das Screening mit konventioneller Koloskopie jedoch generell kosteneffektiver ist.

Diskussion

Schlussfolgerung

Eine klare Empfehlung für die CTC als alternatives Verfahren zum bisherigen Goldstandard konventionelle Koloskopie kann derzeit weder für die Diagnose- noch für die Screeningsituation gegeben werden. Dies gilt aufgrund der vorliegenden Literatur sowohl für die medizinische als auch für die ökonomische Bewertung, ist jedoch trotz der zahlreichen Studien und Analysen zu diesem Thema mit Unsicherheiten behaftet. Wegen der schnellen Weiterentwicklung der CTC sind zu dieser Fragestellung kurzfristige Updates erforderlich.
3 Abstract

Health political background
Colorectal cancer (CC) is the second most common cancer and cause of cancer death for both men and women in Germany. Various methods for early detection of CC exist, including conventional coloscopy which is reimbursed within the scope of cancer screening, as well as computertomography-coloscopy (CTC) which is currently not reimbursed.

Scientific background
CTC is a mere diagnostic procedure which has a lower risk of perforation than conventional coloscopy. However, as it is an x-ray procedure, it exposes the patient to radiation. Conventional coloscopy is considered the gold standard due to its high sensitivity and specificity for locating adenomas. Furthermore, it offers the advantage that in addition to extended diagnostic measures therapeutic measures can be undertaken during the procedure.

Research questions
This HTA-report aims to evaluate the effectiveness and efficiency of CTC in comparison to conventional coloscopy in the early detection and diagnosis of colorectal cancer and/or its precursors and which ethical and legal aspects have to be considered.

Methods
The systematic literature search (27 international literature data bases) yielded a total of 1,713 abstracts. After a two-step selection process 36 publications remained to be assessed.

Results
The results regarding the effectivity of CTC in diagnosis and screening for colorectal cancer and/or its precursors are partly promising, however, they are very heterogeneous. Therefore, regarding its sensitivity and specificity, CTC cannot be considered an equivalent alternative to conventional coloscopy for diagnosis and screening. The heterogeneity of results is due to technical (device type, settings), patient dependent (preparation) and operator dependent (training) factors. No economic results for a comparison of the procedures for diagnosis exist. Regarding the cost-effectiveness of a CTC-screening, international model calculations are available. According to this calculation, the CTC-screening is cost-effective compared to the option ‘no screening’; however, conventional coloscopy-screening is generally more cost-effective.

Discussion
If modern CTC-devices are used with adequate technical settings, software, appropriate patient preparation and training of the operator, better results regarding sensitivity can be expected. Basically, the fact that no therapeutic measures (polypectomy) can be taken during CTC compared to conventional coloscopy needs to be considered. Unanswered medical questions pertain to the interval of examinations for screening (considering the radiation exposure), the approach to small polyps and the significance of flat and depressed lesions. Regarding its cost-effectiveness, conventional coloscopy-screening results in greater health benefits and lower costs than CTC-screening in most model calculations. These results cannot be applied to Germany directly. An important ethical aspect is the consideration of patient preferences regarding the procedures. Legal aspects concern the stipulation and maintenance of quality standards.

Conclusions
At this time, a clear endorsement of CTC as an alternative procedure for diagnosis and screening to the current gold standard conventional coloscopy cannot be given. On the basis of the available literature this holds true for both the medical as well as the economic assessment. However, despite the numerous studies and analyses on this topic, this assessment is afflicted with uncertainties. Due to the rapid development of CTC, short term revisions of these research questions are needed.
4 Kurzfassung

4.1 Gesundheitspolitischer Hintergrund

4.2 Wissenschaftlicher Hintergrund

In der Primärprävention steht die Vermeidung der oben erwähnten Risikofaktoren im Vordergrund. Im Rahmen der Sekundärprävention können durch rechtzeitige Erkennung und Entfernung von Vorstufen (Polypen) Inzidenz und Mortalität des KRK gesenkt werden. Als Früherkennungsverfahren werden der Test auf okkultes Blut im Stuhl (fäkaler okkulter Bluttest) und endoskopische Verfahren empfohlen. Die konventionelle Koloskopie gilt aufgrund ihrer hohen Sensitivität und Spezifität für das Auffinden von Adenomen und KRK als Goldstandard. Sie hat außerdem den Vorteil, in einem Untersuchungs-gang neben erweiterten diagnostischen (Biopsie) auch therapeutische Maßnahmen (Polypenentfernung) zu ermöglichen.

Da die CTC ein rein diagnostisches Verfahren ist, muss bei verdächtigen Befunden zusätzlich eine konventionelle Koloskopie zur Durchführung einer Biopsie oder Polypenentfernung erfolgen (möglichst im Anschluss an die CTC, um eine zusätzliche Darmvorbereitung zu ersparen). Andererseits ermöglicht die CTC die gleichzeitige Darstellung anderer abdomineller Organe. Ein wesentlicher Vorteil der CTC ist das geringere Komplikationsrisiko durch Perforation und das Fehlen von Nebenwirkungen bzw. Risiken durch die bei der konventionellen Koloskopie immer häufiger durchgeführte Sedierung. Hingegen ist bei der CTC die Strahlenbelastung zu berücksichtigen.

4.3 Forschungsfragen

Der Bericht geht folgenden Fragen nach:

- Wie ist die Effektivität der CTC im Vergleich zur konventionellen Koloskopie in der Früh-erkennung und Diagnose von Dickdarmkrebs und/oder Vorstufen (Polypen, Adenome) zu beurteilen?
- Wie ist die Effizienz der CTC im Vergleich zur konventionellen Koloskopie in der Früh-erkennung und Diagnose von Dickdarmkrebs und/oder Vorstufen (Polypen, Adenome) zu beurteilen?
- Welche ethischen, sozialen bzw. juristischen Aspekte sind zu berücksichtigen?
4.4 Methodik
Vorliegender HTA-Bericht verfolgt die Methodik einer systematischen Literaturübersicht. Von den 1.713 aus der systematischen Literatursuche (in der DIMDI-HTA-Superbase sowie in HTA- und Cochrane-Datenbanken) resultierenden Zusammenfassungen verbleiben nach einem zweiteiligen Selektionsprozess nach einheitlichen, vorab definierten Kriterien 31 Volltexte zur medizinischen und fünf Volltexte zur ökonomischen Bewertung. 35 Publikationen werden insgesamt über Handsuche ergänzt. 201 Texte werden als Hintergrundliteratur verwendet (inklusive Texte, die ethische und juristische Aspekte behandeln), 147 Texte werden ausgeschlossen. Für die Behandlung der juristischen Aspekte werden außerdem relevante Gesetzentexte herangezogen. Die Aufarbeitung (Datenextraktion) und Bewertung der eingeschlossenen Volltexte erfolgt gemäß festgelegter Kriterien.

4.5 Ergebnisse
Insgesamt werden 25 Primärstudien und sechs Metaanalysen bzw. systematische Übersichtsarbeiten zur Beantwortung der medizinischen Fragestellungen herangezogen. Zur Diagnostik liegen zum Vergleich der CTC mit der konventionellen Koloskopie teilweise vielversprechende Ergebnisse für die CTC aus einzelnen Zentren vor, wobei es sich teilweise um Studien mit relativ geringer Fallzahl und limitierter Aussagekraft handelt. Zwei Multicenterstudien an jeweils ca. 600 überwiegend symptomatischen Patienten erreichen, bezogen auf Läsionen mit mindestens 10 mm, lediglich eine Sensitivität von knapp über 50 %.

Eine Singlecenterstudie an über 700 Personen mit etwas überdurchschnittlichem Risiko für KRK ergibt befunderabhängig eine patientenbezogene Sensitivität zwischen 41 und 69 % bei Polypen mit 5 bis 9 mm Größe sowie eine Sensitivität zwischen 35 und 72 % bei mindestens 10 mm großen Polypen und zeigt die große Bedeutung des Befunders bei der CTC. Die Spezifitätswerte reichen von 95 bis 98 % bei mehr als 10 mm großen Polypen und von 86 bis 95 % bei 5 bis 9 mm großen.

Metaanalysen bzw. systematische Übersichtsarbeiten kommen teilweise zum Schluss, dass die CTC zur Detektion großer Polypen (mit zumindest 10 mm Durchmesser) aufgrund hoher Sensitivitäts- und Spezifitätswerte prinzipiell geeignet sei. Bei kleineren Läsionen nimmt die Sensitivität der CTC deutlich ab. Insbesondere in den vor kurzem erschienenen Arbeiten, die auch eine größere Anzahl von Studien umfassen, wird der generelle Einsatz der CTC in der allgemeinen diagnostischen Praxis wegen der starken Heterogenität der bisherigen Ergebnisse nicht befürwortet.

Bei der Analyse der Heterogenität zeigt eine Metaanalyse, dass Studien mit Mehrzeildenktoren eine höhere und homogenere Sensitivität als Einzeilenktoren aufweisen und dass eine dünnere Kollimation sowie die Kombination von zwei- mit dreidimensionaler Auswertung bessere Ergebnisse liefern. Eine kürzlich publizierte systematische Übersichtsarbeit führt als weitere wesentliche Parameter für die optimale Untersuchungsqualität gründliche Darmvorbereitung (evtl. mit Stuhlmarkierung), Untersuchung in Rücken- und Bauchlage, adäquate Ausbildung und computerunterstützte Diagnostik an.

Unter bestimmten Umständen wird die Durchführung einer CTC in allen Übersichtsarbeiten auch zum gegenwärtigen Zeitpunkt befürwortet. Eine wesentliche Indikation besteht bei Patienten, bei denen aus anatomischen Gründen oder wegen stenosierender Läsionen eine vollständige konventionelle Koloskopie nicht möglich ist. Auch können Informationen der CTC über pathologische Veränderungen

Alle fünf ökonomischen Modellrechnungen beziehen sich auf ein Screeningsetting und untersuchen entsprechend der gängigen Screeningempfehlungen eine Modellpopulation von (anfänglich) 50-jährigen Personen mit durchschnittlichem Dickdarmkrebsrisiko, die sich in bestimmten zeitlichen Abständen einem Screening unterziehen. Drei Studien beziehen sich auf die USA, eine auf Kanada und eine auf Italien. Alle Studien untersuchen die direkten Kosten pro gewonnenes Lebensjahr aus der Perspektive der Drittzahler im Gesundheitswesen (öffentliche Versicherung bzw. staatlicher Gesundheitsdienst). Die Modellrechnungen zeigen durchweg gute Qualität, jedoch teilweise nur annähernd ausreichende Transparenz in der Dokumentation.

Die Ergebnisse zeigen, dass sowohl die konventionelle Koloskopie als auch die CTC als kosteneffektive Screeningverfahren eingestuft werden können. Die Kosten, die den Drittzahlern des Gesundheitswesens für jedes durch das Screening gewonnene Lebensjahr entstehen, bewegen sich je nach Studie zwischen 8.090 und 18.800 USD bei der konventionellen Koloskopie und zwischen 8.150 und 33.800 USD bei der CTC. Bei einer Studie werden im Vergleich zu einer Situation, in der kein Screening stattfindet, mit beiden Verfahren sogar Kosten eingespart. Die Ergebnisse lassen jedoch auch die Schlussfolgerung zu, dass die Koloskopie aus ökonomischer Sicht der CTC vorzuziehen ist:

Vergleicht man die Verfahren untereinander, so zeigt sich, dass die konventionelle Koloskopie fast ausnahmslos zu mehr gewonnenen Lebensjahren führt und gleichzeitig unter den meisten Annahmen auch weniger kostet als die CTC-Verfahren.

Als einflussreiche Parameter in der Sensitivitätsanalyse zeigen sich in allen Studien die Untersuchungskosten und die Compliance. Einfluss haben teilweise auch die Sensitivität der CTC für Polypen größer gleich zehn Millimeter, der Zeitabstand beim CTC-Screening, das Dickdarmkrebsrisiko aufgrund übersehener Polypen und das Komplikationsrisiko. Nur eine Studie führt eine probabilistische Sensitivitätsanalyse durch (bei der für alle unsicheren Eingangsparameter in der Simulation eine statistische Verteilung zugrunde gelegt wird): Die Wahrscheinlichkeit unter simultaner Einbeziehung der Unsicherheiten in den Parametern, dass ein CTC-Screening mit dreidimensionaler Auswertung bei allen Patienten und einem fünfjährigen Screeningintervall 100.000 USD pro zusätzlich gewonnenen Lebensjahr kostet, beträgt etwa 38 %, und die Wahrscheinlichkeit, dass der Wert bei 40.000 USD liegt, 14 %.

Die Studien berücksichtigen nur die Screeningsituation (alle Personen ab 50, mit durchschnittlichem Dickdarmkrebsrisiko). Dies dürfte vor allem daran liegen, dass die Wahrscheinlichkeit einer Kosteneffektivität der CTC abnimmt, je höher das Dickdarmkrebsrisiko bei der untersuchten Person ist – da damit die Wahrscheinlichkeit steigt, dass der Patient ohnehin zur Koloskopie und ggf. zur Polypenabtragung überwiesen werden muss. Ökonomische Untersuchungen, die sich mit der Frage beschäftigen, ob bei Patienten, bei denen die konventionelle Koloskopie nicht indiziert ist bzw. nur eine inkomplette Koloskopie möglich ist, zur vollständigen Abklärung auf jeden Fall eine CTC durchgeführt werden soll, liegen anhand der für diesen Bericht durchgeführten Literatursuche nicht vor.
Die ökonomischen Ergebnisse der fünf Analysen aus den anderen Ländern sind aufgrund des unterschiedlichen Gesundheitssystems in Deutschland und anderer Kostenstrukturen nicht direkt übertragbar.

Für die konventionelle Koloskopie besteht eine Qualitätssicherungsvereinbarung, die klare Standards für die Durchführung dieser Untersuchung setzt. Um die Qualitätssicherung bei der CTC zu gewährleisten, wird für diese die Entwicklung ähnlicher Richtlinien gefordert.

4.6 Diskussion

Endoskopische Verfahren bieten eine hohe Zuverlässigkeit in der Diagnostik gastroenterologischer Erkrankungen und haben auch den Vorteil, in einem Untersuchungsgang erweiterte diagnostische bzw. therapeutische Maßnahmen zu ermöglichen, was beim Vergleich der Effizienz und Effektivität zwischen der CTC und der konventionellen Koloskopie prinzipiell zu bedenken ist. Die Ergebnisse zur Effektivität der CTC in Diagnostik und Screening von Dickdarmkrebs und/oder Vorstufen (Polypen, Adenome) sind teilweise vielversprechend, aber aus verschiedenen Gründen sehr heterogen. Sowohl in der Diagnose als auch beim Screening kann die CTC der Literatur zufolge hinsichtlich ihrer Erkennungsgüte derzeit nicht generell als gleichwertige Alternative zur konventionellen Koloskopie gesehen werden. Die Studien zeigen allerdings auch, dass bei der konventionellen Koloskopie klinisch relevante Polypen übersehen werden können. Unter bestimmten Bedingungen ist der Einsatz der CTC indiziert.

Je höher hingegen die Wahrscheinlichkeit eines positiven Befundes in der CTC ist, desto eher wird auch eine Zuweisung zur konventionellen Koloskopie notwendig sein, weshalb insbesondere Patienten mit Hochrisikosymptomatik bzw. mit deutlich erhöhtem Risiko für Polypen oder KRK aufgrund der gleichzeitigen therapeutischen Möglichkeit im Allgemeinen von einer konventionellen Koloskopie mehr profitieren können. Ökonomische Ergebnisse zum Verfahrensvergleich in der Diagnostik liegen (dementsprechend) nicht vor. Im Fall von unvollständigen Koloskopien oder bei Vorliegen von Kontraindikationen wäre die Abklärung mittels CTC hingegen als Alternative zur Abklärung durch
Doppelsontrastdarstellung des Dickdarms anzusehen, wobei diese der CTC in der Erkennungsgüte als unterlegen gilt.
Bevor die CTC generell als Screeningmethode zur Detektion von KRK empfohlen werden kann, ist eine weitere Abklärung der Ursachen für die Heterogenität der Sensitivität in den bisherigen Studien zu fordern bzw. das Vorliegen von konsistenten Daten.

Hinsichtlich der Kosteneffektivität eines CTC-Screenings im Vergleich zum Koloskopiescreening liegen international verschiedene Ergebnisse aus mehreren Modellrechnungen vor, aufgrund derer das CTC-Screening zwar als kosteneffektiv zur Option „kein Screening“, jedoch – unter den meisten Annahmen – nicht als kosteneffektiv im Vergleich zum Screening mit konventioneller Koloskopie bezeichnet werden kann. Dieses Ergebnis lässt sich aufgrund der unterschiedlichen Gesundheits- und Kostenstrukturen nicht ohne weiteres auf Deutschland übertragen. Eine wichtige Rolle spielen die Höhe der Untersuchungskosten und die Compliance der Patienten (sowohl Screeningcompliance als auch die Compliance zu einer Folgekoloskopie).

Im Gegensatz zur konventionellen Koloskopie gibt es bisher keine etablierten Empfehlungen zu Häufigkeit und Untersuchungsintervall beim Screening für die CTC. Auch die Vorgangsweise beim Auffinden von kleinen Polypen in der CTC ist nicht einheitlich geregelt. Aus ökonomischer Sicht ist ein CTC-Screening im Fünfjahresabstand kosteneffektiver als eines im Zehnjahresabstand, allerdings ohne Berücksichtigung der erhöhten Strahlenbelastung und der indirekten Kosten (Patientenzeit).

In der CTC können im Gegensatz zur Koloskopie auch − teilweise klinische relevante − extrakolonische Diagnosen (z. B. Krebserkrankungen oder Aneurismen) als Zufallsbefunde entdeckt werden. Aus ökonomischer Sicht erhöhen extrakolonische Befunde die Kosten der Diagnose (und Behandlung), können jedoch evtl. auch zu Einsparungen aufgrund vermiedener Folgeerkrankungen führen. In den vorliegenden Analysen wurden sie nicht berücksichtigt.

4.7 Schlussfolgerung/Empfehlung

Eine klare Empfehlung für die CTC als alternatives Verfahren zu der – bisher als Goldstandard akzeptierten – konventionellen Koloskopie kann derzeit weder für die Diagnose noch für die Screeningsituation generell gegeben werden. Diese Schlussfolgerung gilt aufgrund der vorliegenden Literatur sowohl für die medizinische als auch für die ökonomische Bewertung. Sie ist jedoch trotz der
zahlreichen Studien und Analysen zu diesem Thema mit einigen Unsicherheiten behaftet (große Heterogenität bei den medizinischen Studienergebnissen, keine ökonomische Modellrechnung zu Deutschland etc.).

5 Summary

5.1 Health political background

Colorectal cancer (CC) is the second most common cancer and cause of cancer death for both men and women in Germany. According to the guidelines of the Federal Committee of Physicians and Sickness Funds for the early detection of cancer (Bundesausschuss der Ärzte und Krankenkassen zur Früherkennung von Krebserkrankungen) patients 55 years and older are entitled to two conventional colonoscopies in an interval of ten years. The conventional colonoscopy is an endoscopic examination of the colon; before the procedure, the colon must be emptied completely. Conventional colonoscopy is the gold standard in the diagnosis of CC at this time.

Computer-tomography-colonoscopy (CTC) is a computerised, diagnostic X-ray procedure which also requires colon preparation. The data which are provided as CT-slices are converted into a 3-D-image (virtual colography). At this time, the health insurance funds do not reimburse the costs for CTC.

5.2 Scientific background

Genetic as well as life-style factors (e.g. overweight, lack of exercise, low-fibre nutrition, alcohol abuse) are involved in the etiological and pathogenetical development of CC. It usually develops from adenomatous polyps, the risk for malignancy depending on the histological type. With increasing size and number of polyps the risk for CC rises. The importance of flat lesions and the development of CC without precursors or intermediate stages (de-novo-carcinogenesis) is being discussed.

Due to the high incidence of CC, the fact that physical discomfort often only occurs at a late stage of the disease, and the high mortality in advanced stages of CC, preventive measures in line with screening programs are taken. Through timely detection and removal of polyps, the incidence and mortality of CC can be lowered within the scope of secondary prevention. For early detection the test for occult blood in stool (faecal occult blood test) and endoscopic procedures are recommended. Due to its high sensitivity and specificity for discovering adenomas and CC, conventional colonoscopy is considered the gold standard. Furthermore, it offers the advantage that in addition to extended diagnostic measures (biopsy) therapeutic measures can be taken immediately during the procedure.

In case of suspect findings during a CTC, an additional conventional colonoscopy has to be undertaken (preferably subsequent to the CTC in order to avoid another colon preparation) in order to do a biopsy or polypectomy, as CTC is a purely diagnostic procedure. On the other hand, CTC allows for the concomitant depiction of other abdominal organs. An essential advantage of the CTC is the lower risk for complications through perforation and the lack of side effects or risks of sedatives, which are frequently administered before and/or during conventional colonoscopy. However, radiation exposure during CTC has to be considered.

5.3 Research questions

This report aims to answer the following research questions:

- How effective is CTC compared to conventional colonoscopy for early detection and diagnosis of CC and/or precursors (polyps, adenomas)?
- How efficient is CTC compared to conventional colonoscopy for early detection and diagnosis of CC and/or precursors (polyps, adenomas)?
- What are the ethical and legal aspects that have to be considered?

5.4 Methods

This HTA-report was prepared by applying the methods for a systematic literature review. The systematic literature search (DIMDI-HTA-superbase as well as HTA- and Cochrane-databases) yielded 1,713 abstracts. Following a two-part selection process according to standard, predefined criteria 31 medical and five economic publications were included in the assessment. 35 publications were
5.5 Results

A total of 25 primary studies and six meta-analyses or systematic reviews are used to answer the research questions. Partly promising results for CTC regarding diagnosis are reported from individual centres comparing CTC and conventional coloscopy; however, some of these studies have a relatively small sample size and limited significance. Two multi-centre studies in about 600 mostly symptomatic patients each show a sensitivity of only slightly more than 50 % for lesions of at least 10 mm.

A multi-centre study in more than 1,200 asymptomatic patients with an average risk for CC shows the best results for CTC, namely approximately equal sensitivity for CTC and conventional coloscopy in the diagnosis of medium-sized and large polyps. The patient-specific sensitivity of CTC for polyps with a size of 10 mm or more is 94 % and for polyps with a size of 6 mm or more 89 %. The specificity of CTC for adenomatous polyps is 96 % for at least 10 mm diameter and 80 % for at least 6 mm diameter. In this study, four-channel and eight-channel CT scanners are used; in addition, the image quality is improved by electronic cleansing. The primary appraisal is done by highly experienced radiologists using 3-D-images. The good results are also explained by the particularly thorough colon preparation and stool tagging.

Depending on the reader, a patient-specific sensitivity between 41 and 69 % for polyps 5 to 9 mm in size and a sensitivity between 35 and 72 % for polyps of at least 10 mm is reported in a single-centre study in more than 700 patients at slightly higher-than-average risk for CC; this shows the importance of the reader for CTC. Specificity ranges from 95 to 98 % for polyps larger than 10 mm and from 86 to 95 % for those 5 to 9 mm in size.

Some meta-analyses and systematic reviews conclude that, due to its high sensitivity and specificity CTC is generally suitable for the detection of large polyps (with a diameter of at least 10 mm). Regarding smaller lesions, the sensitivity of CTC is significantly reduced. Particularly in more recent publications, which also include a larger number of studies, the broad use of CTC in the general, diagnostic practice is not recommended because of the strong heterogeneity of results so far.

Analysing the heterogeneity, one meta-analysis shows that studies using multiple detectors report a higher and more homogenous sensitivity than those using single detectors and that a thinner collimation, as well as a combination of two-dimensional and three-dimensional imaging yield better results. A recent systematic review cites thorough colon preparation (possibly with stool tagging), examination in supine and prone position, adequate training, and computer-supported diagnostics as additional important parameters for the optimal quality of examination.

In all systematic reviews CTC is being recommended under certain circumstances. It is essentially indicated in patients in whom a complete conventional coloscopy is not possible due to anatomical reasons or stenosing lesions. Also, CTC can yield valuable information on pathological changes proximal a tumour stenosis through identification of additional tumours or staging. Furthermore, CTC can be considered if the risk or effort of an endoscopy (or sedation) is significantly increased (e. g. in patients with blood coagulation disorders or anticoagulated patients or old and frail patients). Recent results which have not been officially published suggest that the further development of CTC in past years (towards 64-slice detectors) in combination with adequate training of the reader and corresponding evaluation modalities optimises the quality of diagnostics; thus, in the future, CTC might be considered not only for diagnostics but also for screening for CC.

All five economic model calculations refer to a screening setting. According to established screening guidelines they examine a hypothetical population of 50 year olds (at baseline) at average risk for CC who undergo a screening at certain time intervals. Three studies refer to the US, one to Canada and one to Italy. All studies evaluate the direct costs per life-year gained from the perspective of third-party payers in public health care (public health insurance or national health care service). The model calculations are of good quality, however, transparency of documentation is not always adequate.
The results show that both conventional coloscopy and CTC can be classified as cost-effective screening methods. Costs incurred by third-party payers of the health care system range from 8,090 to 18,800 USD per life-year gained for conventional coloscopy and from 8,150 to 33,800 USD per life-year gained for CTC. Compared to a scenario with no screening, one study suggests that costs can even be saved with both techniques. However, these results can also lead to the conclusion that conventional coloscopy is preferable to CTC from an economical point of view: if the procedures are compared, conventional coloscopy results in more life-years gained almost without exception. At the same time, it costs less than CTC under most scenarios.

In all studies, costs of examination and compliance are important parameters in sensitivity analysis. The sensitivity of CTC for polyps larger than or equal to 10 mm, the time interval for CTC-screening, the risk of CC due to missed polyps and the risk of complications also are of some importance. Only one study undertakes a probabilistic sensitivity analysis (in which all uncertain baseline parameters were assumed to be statistically distributed in the simulation): the probability that a CTC-screening with three-dimensional imaging in all patients and a screening interval of five years costs 100,000 USD per additional life-year gained is 38 % when uncertainty of parameters is considered simultaneously. The probability that the costs are 40,000 USD is 14 %.

Extracolonic findings during CTC and health effects and costs resulting therefrom are disregarded in the model calculations. Moreover, there is a lack of consistent consideration of a possible reduction in life quality (not only through the short-term burden during the examination, but also because of complications, extracolonic findings, or for patients with cancer). No conclusion can be drawn on how the results would be different if these things were considered.

The studies only consider the screening situation (all patients older than 50 years of age, at an average risk for CC). This is probably due to the fact that the probability of CTC being cost-effective decreases with an increasing risk for CC in the screened patient – as with an increased risk for CC, the probability increases that the patient is referred to conventional coloscopy and possibly polypectomy anyway. The literature search for the present report yielded no economic evaluations dealing with the question if patients, in whom a conventional coloscopy is not indicated or in whom only an incomplete coloscopy is possible, should undergo a CTC for clarification.

The economic results of the five analyses conducted in the US, Canada and Italy are not directly applicable to Germany due to their different health care systems and cost structures.

In a recent German model calculation for CC-screening using conventional coloscopy, the costs for conventional coloscopy are estimated to be 197 Euro, for coloscopy including histology 209 Euro and for coloscopy with polypectomy 245 Euro. The costs of a CTC-examination in Germany can only be estimated according to the physician fee schedule for private physician services. Similar to the five model calculations its costs may be lower than the above mentioned costs for the (diagnostic) coloscopy. However, the model calculations show that only a significant difference in costs (at least about 25 % lower costs of CTC compared to diagnostic coloscopy) could possibly result in CTC being the more cost-effective procedure. In the five model calculations, compliance is assumed to range from 60 to 100 %. For Germany, this assumption seems to be too optimistic. The cumulative participation rate for screening coloscopy was 10.2 for women and 8.8 % for men from 2003 to 2005. A lower compliance at the first screening and comparably high compliance at follow-up coloscopies could favour the cost-effectiveness of CTC, as shown by one of the model calculations. Regarding compliance at follow-up coloscopy, the option to undergo this examination on the same day without additional preparation may play an important role.

Although conventional coloscopy is part of the early cancer detection program in Germany, only a relatively low percentage of the population uses this option. Even if medically indicated, CTC is not being reimbursed. Regarding the preferences of patients for one of the procedures, different studies report conflicting results. However, colon preparation, which at this time is necessary for both procedures and the painfulness of examinations are clearly important factors. Adequate patient information regarding risks and benefits of the procedures therefore is of utmost importance.

For conventional coloscopy, an agreement on quality assurance exists which lists clear standards for conducting this examination. The development of similar guidelines is called for in order to ensure quality assurance for CTC.
5.6 Discussion

Endoscopic procedures have a high reliability for diagnosing gastroenterological disorders. In addition, they have the advantage that extended diagnostic and therapeutic measures are possible during one examination, which has to be considered when comparing the efficiency and effectiveness of CTC and conventional coloscopy. The results regarding the effectiveness of CTC in diagnostics and screening for colorectal cancer and/or its precursors (polyps, adenomas) are partly promising; however, they are very heterogenous for various reasons. Regarding its sensitivity and specificity, CTC cannot be considered an equivalent alternative to conventional coloscopy for diagnosis and screening. The studies, however, also show that clinically relevant polyps can be overlooked during conventional coloscopy. CTC is indicated under certain circumstances. The higher the probability of a positive finding in CTC, the more likely it is that a referral to conventional coloscopy will be necessary; therefore, particularly patients showing high-risk symptoms or at significantly increased risk for polyps or CC may generally benefit from conventional coloscopy due to the option of immediate therapy. Economic results regarding a comparison of the procedures in a diagnostic setting are not available. In case of incomplete coloscopies or contraindications, clarification through CTC as an alternative to contrast barium enema can be considered, as CTC has a higher sensitivity and specificity than contrast barium enema.

Before a general recommendation for CTC as a screening method for detection of CC can be made, the reasons for heterogeneity in sensitivity in the existing studies need to be clarified and consistency in data is to be demanded.

Regarding the cost-effectiveness of CTC-screening in comparison to coloscopy-screening different results are available internationally from various model calculations. On the basis of these calculations, CTC screening can be considered cost-effective compared to the option 'no screening', but – in most scenarios – not when compared to conventional coloscopy screening. The results are not directly applicable to Germany due to differences in health care systems and cost structures. Examination costs and compliance of the patients (screening compliance as well as compliance regarding a follow-up coloscopy) play an important role.

Unlike for conventional coloscopy, no established recommendations exist regarding the frequency and time interval for CTC-screening. Which approach should be taken in case of finding small polyps during CTC is also not consistently regulated. From an economical point of view, a CTC-screening every five years is more cost-effective than one every ten years; however, the increased radiation exposure and indirect costs (patient time) has not been considered.

Within the economic model calculations it is mostly assumed that any finding of polyps during a CTC leads to a coloscopy, independent of the characteristics of the polyp. On the basis of the available results no conclusion can be drawn if the cost-effectiveness of CTC will be positively influenced if only polyps of a certain size are followed up by coloscopy. In addition, it should be considered that according to some authors further CTC control examinations should be conducted in shorter time intervals if polyps are not removed. This approach requires a high compliance of the patient and also causes additional radiation exposure. Furthermore, no data currently exist on the development of small polyps and the relevance of flat lesions.

In contrast to coloscopy, extracolonic diagnoses can be discovered as chance findings – some with clinical relevance – during CTC. From an economical point of view, extracolonic findings lead to an increase of diagnosis- (and treatment-) costs; however, they can also cause cost-savings by preventing sequlae. They have not been considered in the available analyses.

Particularly when screening healthy persons, the risk of the examination is of importance. In general, CTC is assumed to have a lower risk profile than conventional coloscopy. Of relevance for CTC are radiation exposure and a minimal risk of perforation.

An important ethical aspect is the consideration of patient preferences regarding the procedures, as especially in the context of screening both procedures are demanding and perceived to be unpleasant. Technical improvements of CTC which make a less demanding colon preparation possible could increase compliance for screening examinations. Furthermore, adequate patient information regarding benefits and risks are of importance. The fact that even when medically indicated CTC is not being
reimbursed in Germany has to be taken into account as a social aspect. Apart from patient information and education, legal aspects especially pertain to stipulation and adherence to quality standards.

5.7 Conclusions/recommendations

At this time, a clear endorsement of CTC as an alternative procedure for conventional coloscopy which is agreed to be the current gold standard cannot be given either for diagnosis or for screening. On the basis of the available literature this holds true for both the medical as well as the economic assessment. However, despite the numerous studies and analyses on this topic, this assessment is afflicted with uncertainties (large heterogeneity of medical results, no model calculation for Germany).

Indications for diagnosing CC using CTC exist. If modern CTC-devices are used with adequate technical setting, software, and adequate training of the reader, better results regarding sensitivity can be expected according to recent studies. To what extent these results can be utilised in clinical everyday practice has to be examined depending on the technical equipment and training. Similarly to the agreement on quality assurance standards for coloscopy in Germany, the development of similar guidelines is recommended for CTC.

The rapid technological development of CTC during the past years and newly published study results require short-term revisions regarding these research questions.

In order to recommend CTC for screening, studies aiming to determine an appropriate screening interval while taking into account radiation exposure, and regulation of the approach to be taken when finding polyps are desirable. Regarding the relevance of flat or depressed lesions further research is necessary. In studies comparing CTC and conventional coloscopy, adequate sample sizes should be aimed for; also, complete presentation of data in the publications (e.g. technical aspects including radiation dose, software, assessment modalities, training and experience of the readers for both procedures) is essential to make results transparent and comparable. In order to appraise the cost-effectiveness of a CTC-screening in Germany, a model calculation adjusted to the German situation is necessary (possibly by adapting existing model calculations). However, the results of ongoing studies on the sensitivity and specificity of CTC should be awaited.
6 Hauptdokument

6.1 Gesundheitspolitischer Hintergrund

In Deutschland erkranken nach Schätzungen des Robert-Koch-Instituts jährlich circa 70.000 Menschen an Darmkrebs (Dickdarm, Mastdarm, Anus). Sie stellen für beide Geschlechter die zweithäufigste Krebserkrankung und Krebstodesursache dar. Rund 30.000 Menschen sterben an den Folgen der Darmkrebs (Dickdarm, Mastdarm, Anus).

Verschiedene Verfahren stehen zur Früherkennung von Darmkrebskrankungen zur Verfügung, darunter der Test auf okkultes Blut im Stuhl (fäkaler okkultes Bluttest, abgekürzt FOBT) und die Koloskopie (Darmspiegelung). Die Koloskopie (im weiteren Bericht als konventionelle Koloskopie bezeichnet) ist eine endoskopische Untersuchung des Dickdarms. Zusätzlich zu diagnostischen Maßnahmen besteht auch die Möglichkeit, kleine operative Eingriffe vorzunehmen.

6.2 Wissenschaftlicher Hintergrund

6.2.1 Dickdarmkrebs/kolorektales Karzinom (KRK)

6.2.1.1 Epidemiologie

Das KRK ist weltweit bei beiden Geschlechtern die dritthäufigste und in den Industrieländern die zweithäufigste Krebsart10. Auch in Deutschland liegt das KRK in der Statistik aller Krebsarten auf dem dritten Platz. Die Inzidenz hat sich zwischen 1960 und 1980 verdoppelt und nimmt seit Ende der 1980er Jahre leicht ab. Es besteht eine deutliche Altersabhängigkeit, wobei insbesondere jenseits des 50. Lebensjahres die Inzidenz exponentiell ansteigt27,77.

Aufgrund der großen Bedeutung des KRK wurde im Auftrag der Deutschen Gesellschaft für Verdauungs- und Stoffwechselkrankheiten unter Mitarbeit mehrerer medizinischer Gesellschaften (z. B. Deutsche Krebsgesellschaft, Deutsche Gesellschaft für Koloproktologie, Deutsche Gesellschaft für Radioonkologie) eine Konsensuskonferenz veranstaltet, die erstmals 1999 evidenzbasierte Leitlinien zum KRK erstellte. 2004 wurde ein Update durchgeführt, auf das sich wesentliche Aussagen der folgenden Unterkapitel beziehen (Risikogruppen, Prävention, Screening, Diagnostik, Therapie)307.

6.2.1.2 Ätiologie, Pathogenese und Risikofaktoren

KRK entstehen überwiegend aus adenomatösen Polypen, wobei sich im Lauf mehrerer Jahre schrittweise genetische Veränderungen anhäufen. Dieser mehrstufige Prozess wird als Adenom-Karzinom-Sequenz bezeichnet. Das Risiko der Entartung steigt prinzipiell mit Größe und Anzahl der Polypen und hängt im Detail vom histologischen Typ ab. Beispielsweise haben tubuläre Adenome mit schwerer Dysplasie oder mit villösen Polypanteilen ein hohes Entartungsrisiko, bei tubulären Adenomen mit leichter oder mäßiger Dysplasie ist das Risiko mäßig erhöht, während bei hyperplastischen Polypen kein Entartungsrisiko besteht309. Durch die Entfernung verdächtiger Vorstufen (z. B. durch Polypektomie im Rahmen einer Koloskopie) können KRK vermieden werden181. Zusätzlich zur Adenom-Karzinom-Sequenz wird die De-novo-Karzinogenese ohne die oben beschriebenen Vor- bzw. Zwischenstufen als alternativer Entstehungsweg des KRK diskutiert48,324. Flache und eingesunkene Adenome kommen nicht nur in Japan vor, wo sie ursprünglich beschrieben wurden, sondern sind in den letzten Jahren auch in westlichen Ländern mit unterschiedlicher Häufigkeit dokumentiert worden. Einzelne Studien weisen sogar auf ein höheres Malignitätspotenzial im Vergleich zu polypoiden Adenomen hin274,295,352.

Sowohl genetische Komponenten als auch Lebensstilfaktoren können bei der Entstehung eines KRK beteiligt sein.

Zu den hereditären KRK zählen die familiäre adenomatöse Polyposis (FAP) und das hereditäre kolorektale Karzinom ohne Polyposis (HNPPC). Da aufgrund von Mutationen in einem Tumorsuppressor- gen im Lauf des Lebens über 100 kolorektale Adenome auftreten, entsteht bei der FAP mit einer Wahrscheinlichkeit von nahezu 100 % ein KRK. Bei der HNPPC tritt mit einer Wahrscheinlichkeit von ca. 60 bis 80 % ein KRK auf. Diese monogen vererbbten Erkrankungen sind allerdings nur für weniger als 5 % aller KRK verantwortlich. Am häufigsten tritt ein KRK vereinzelt („sporadisch“) auf. Es gelten jedoch auch Verwandte von Patienten mit einem sporadisch auftretenden KRK als Risikogruppe, wobei die genetische Ursache derzeit überwiegend noch nicht bekannt ist307.

Übergewicht, Bewegungsmangel und Nikotinabusus sind Lebensstilfaktoren, die mit einem erhöhten Risiko für KRK einhergehen. Auch Ernährungsgewohnheiten wie hoher Alkoholkonsum, ballaststoffarme Ernährung, tägliche Aufnahme von rotem bzw. verarbeitetem Fleisch sowie möglicherweise fettreiche Ernährung erhöhen die Wahrscheinlichkeit, an KRK zu erkranken307.

6.2.1.3 Klinik, Diagnostik, Therapie und Prognose

Körperliche Beschwerden können beim KRK relativ spät bzw. erst in fortgeschrittenen Tumorstadien auftreten308. Mögliche Symptome sind: Obstipation bzw. Durchfall, Leistungsabfall, Schmerzen, Gewichtsverlust, (okkultes) Blut im Stuhl, Teerstuhl, Anämie351. Zur Diagnostik des KRK werden primär die digital-rektale Untersuchung und eine Koloskopie mit Biopsie zur histologischen Sicherung angewendet. Der Kolonkontrasteinlauf (eine röntgenologische Doppelkontrastdarstellung des Dick-
Effektivität und Effizienz der CT-Koloskopie im Vergleich zur konventionellen Koloskopie in der Darmkrebsdiagnose und -früherkennung

darms mit rektaler Verabreichung von Kontrastmittel) verliert zunehmend an Bedeutung. Im Rahmen der präoperativen Ausbreitungsdagnostik sind Abdomensonografie und Thoraxröntgen sowie bei unklaren Befunden eine Computertomografie oder Magnetresonanztomografie vorgesehen. Labordiagnostisch wird der Tumormarker „Carcinoembryonales Antigen“ bestimmt. Für die Therapie stehen chirurgische Maßnahmen (z. B. Hemikolektomie, Sigma- bzw. Rektumresektion), Chemotherapie (z. B. 5-Fluoruracil/Folinsäure, Oxaliplatin, Irinotecan), Strahlentherapie und neuerdings auch Antikörper gegen den vaskulären endothelialen Wachstumsfaktor (Bevacizumab) bzw. Antikörper gegen den Rezeptor des epithelialen Wachstumsfaktors (Cetuximab) zur Verfügung. Im Einzelfall hängen Art der Therapie und Auswahl der Therapiekombination von der Lokalisation und vom Krankheitsstadium ab. KRK metastasieren lymphogen und hämatogen. Fernmetastasen treten vor allem in Leber, Lunge und Skelettsystem auf. Die Prognose ist abhängig von der initialen Tumor-/Ausdehnung und dem Ausbreitungsstadium, insbesondere vom Lymphknotenstatus. Die Fünfjahresüberlebensrate reicht von 5 % im schlechtesten Stadium bis > 90 % im besten Stadium. Insgesamt liegt die Fünfjahresmortalität bei 50 bis 60 %.

6.2.1.4 Prävention und Screening

In der Primärprävention (Verhinderung des KRK) steht die Vermeidung der oben erwähnten Risikofaktoren (Übergewicht, Rauchen, körperliche Inaktivität) im Vordergrund. Als etablierte Ernährungsempfehlung zur Senkung des Dickdarmkrebsrisikos gilt eine hohe Ballaststoffzufuhr, wobei insbesondere vermehrt Obst und Gemüse verzehrt werden soll. Rotes bzw. verarbeitetes Fleisch soll nicht täglich konsumiert werden, und eine Limitierung des Alkoholkonsums wird angeraten.

6.2.1.5 Bildgebende Diagnose- und Screeningverfahren

6.2.1.5.1 Konventionelle Koloskopie

Sowohl in der Diagnostik als auch beim Screening des KRK gilt die konventionelle Koloskopie als Goldstandard. Der wesentliche Vorteil endoskopischer Maßnahmen liegt darin, nicht nur diagnostische, sondern auch therapeutische Möglichkeiten (Abtragung von Polypen) zu umfassen. Polypen mit einer Größe bis zu 5 mm werden mit einer Zange, ab 5 mm mit einer Schlinge abgetragen und histologisch untersucht.

Ein Vorteil beim Screening mittels konventioneller Koloskopie ist das relativ lange Kontrollintervall von zehn Jahren bei Personen mit durchschnittlichem Risiko. Im Vergleich zum FOBT ist der Aufwand jedoch beträchtlich und auch ein gewisses Komplikationsrisiko zu beachten. Die Perforationsrate wird bei diagnostischen Koloskopen mit 0,016 bis 0,6 Promille und nach Biopsie oder Polypektomie mit ca. einer Promille angegeben. Die Häufigkeit von Blutungen nach Biopsien bzw. Polypektomien beträgt zwischen 0,46 und 0,79 %. Bei der prospektiven Münchner Polypektomiestudie (fast 4.000 Polypektomien durch Abtragung mit einer Schlinge bei über 2.200 Patienten) wird eine Komplikationsrate von bis zu 10 % angegeben, wobei allerdings der Großteil der angeführten Komplikationen klinisch nicht relevant ist. Größere Komplikationen durch Blutung werden in 1,6 % und Perforationen in 1,1 % der Fälle berichtet.

Die Kolonkapsel (als Weiterentwicklung der Dünndarmkapsel) zeigt erste vielversprechende Ergebnisse, vor einem breiteren Einsatz sind jedoch weitere Studien notwendig.

6.2.1.5.2 Computertomografie-Koloskopie (CTC, virtuelle Koloskopie, CT-Kolografie)

Als alternative bildgebende Methode ohne Strahlenbelastung steht auch die Magnetresonanztomografie zur Verfügung, die ebenfalls eine virtuelle Koloskopie ermöglicht. Sie wird teilweise als Methode der Zukunft bezeichnet, allerdings ist die Auflösung im Vergleich zur CTC derzeit geringer, und es liegen noch nicht ausreichend Studien vor2, 360.

6.3 Forschungsfragen

Die vom DIMDI übermittelte (im Rahmen der Machbarkeitsanalyse modifizierte) Fragestellung lautet: Welchen medizinischen und gesundheitsökonomischen Nutzen hat das CT-Koloskopieverfahren (= virtuelle Kolosgrafie) im Vergleich zur konventionellen Koloskopie (= Dickdarmspiegelung)?

Folgende Forschungsfragen wurden festgelegt:

• Wie ist die Effektivität der CTC im Vergleich zur konventionellen Koloskopie in der Früherkennung und Diagnose von Dickdarmkrebs und/oder Vorstufen (Polypen, Adenome) zu beurteilen?
• Wie ist die Effizienz der CTC im Vergleich zur konventionellen Koloskopie in der Früherkennung und Diagnose von Dickdarmkrebs und/oder Vorstufen (Polypen, Adenome) zu beurteilen?
• Welche ethischen, sozialen bzw. juristischen Aspekte sind zu berücksichtigen?

6.4 Methodik

6.4.1 Suchstrategie und Datenquellen

Durchgeführt wird eine systematische Literatursuche in 27 internationalen Literaturdatenbanken. Für die Suche (vgl. 8.3 Suchstrategie im Anhang) werden sieben Schlagwortgruppen gebildet. Diese enthalten Begriffe inklusive relevanter Synonyme zu:

1. KRK, Adenome, Polypen
2. Konventionelle Koloskopie, CTC
3. Diagnose und Screening
4. Verschiedene Studiendesigns
5. Ökonomie
6. Ethik
7. Recht

Für die Suche nach medizinischen Texten werden die Gruppen 1 bis 4 mit UND verknüpft, für die Suche nach ökonomischen Texten werden die Gruppen eins, zwei und fünf mit UND verknüpft, für die Suche nach Artikeln zu ethischen und juristischen Aspekten die Gruppen 2 und 6 bzw. 7. Darüber hinaus wird der Suchzeitraum auf die Jahre 2003 bis 2007 eingeschränkt (Zeitpunkt der Suche: 05.02.2007). Publikationen, die nicht deutsch- oder englischsprachig sind, werden ausgeschlossen.
Eine zusätzliche Handsuche wird bei Bedarf durchgeführt (Internetrecherche, Prüfung von Literaturreferenzen der vorliegenden Studien, Literaturhinweise von mit der Materie befassten Experten).

6.4.2 Selektionskriterien

6.4.2.1 Erstselektion

Tabelle 1: Ein- und Ausschlusskriterien zur Selektion der Zusammenfassungen

<table>
<thead>
<tr>
<th>Einschlusskriterien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medizinische Einschlusskriterien</td>
</tr>
<tr>
<td>Zielgruppe: erwachsene Personen</td>
</tr>
<tr>
<td>Untersuchung: Früherkennung und Diagnose von Dickdarmkrebs und/oder Vorstufen (Polypen, Adenome) mithilfe der CTC im Vergleich zur konventionellen Koloskopie bzw. nur mithilfe eines der beiden Verfahren</td>
</tr>
<tr>
<td>Ökonomische Einschlusskriterien</td>
</tr>
<tr>
<td>Studien mit Bezug auf Deutschland oder auf ein vergleichbares Land (Europa, USA, Kanada, Australien, Neuseeland etc.)</td>
</tr>
<tr>
<td>Weitere Einschlusskriterien</td>
</tr>
<tr>
<td>Artikel zu ethischen, sozialen oder rechtlichen Aspekten der beiden Verfahren</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiendesign</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medizinische Studien: Primärstudien, Literatur-Reviews, Metaanalysen, HTA-Berichte, Guidelines/Leitlinien, Hintergrundartikel</td>
</tr>
<tr>
<td>Bei Hintergrundartikeln zu verfahrenstechnischen Fragen (verschiedene Untersuchungstechniken, computerunterstützte Auswertung etc.) werden aufgrund der schnellen technologischen Entwicklung nur Artikel ab 2005, bei Primärstudien mit einer Fallzahl > 100 Personen eingeschlossen.</td>
</tr>
<tr>
<td>Ökonomische Studien: Studien mit Gegenüberstellung von Kosten und Wirksamkeit/Nutzwert/Nutzen, Kostenanalysen, Behandlung von Kosten im weiteren Sinn, Hintergrundartikel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ausschlusskriterien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formale Kriterien</td>
</tr>
<tr>
<td>Studien, die nicht in deutscher oder englischer Sprache publiziert sind</td>
</tr>
<tr>
<td>Duplikate</td>
</tr>
<tr>
<td>Medizinische Kriterien</td>
</tr>
<tr>
<td>Anderes Verfahren/andere Untersuchungsart</td>
</tr>
<tr>
<td>Andere Zielgruppe</td>
</tr>
<tr>
<td>Nicht zur Fragestellung passende Schwerpunktsetzung bzw. zu allgemein, anderes Thema</td>
</tr>
<tr>
<td>Therapeutische Studien</td>
</tr>
<tr>
<td>Studiendesign</td>
</tr>
<tr>
<td>Fallstudien bzw. Fallserien (bis 10 Fälle)</td>
</tr>
<tr>
<td>In-vitro-Studien, tierexperimentelle Studien</td>
</tr>
<tr>
<td>Bei allen nicht-ökonomischen Studien: Kongresspräsentationen, Poster usw. (soweit offensichtlich kein publizierter Volltext im Hintergrund)</td>
</tr>
</tbody>
</table>

CTC = Computertomografie-Koloskopie. HTA = Health Technology Assessment. USA = United States of America (dt.: Vereinigte Staaten von Amerika).
Quelle: ÖBIG-FP-eigene Darstellung
6.4.2.2 Zweitselektion

6.4.2.2.1 Volltexte für die medizinische Bewertung

Die vorliegenden Volltexte werden anhand der in Tabelle 2 (Selektionskriterien für die medizinischen Volltexte) angeführten Selektionskriterien geprüft. Alle Studien, die eines der Ausschlusskriterien erfüllen, werden ausgeschlossen. Alle Studien, die die formalen und medizinischen Einschlusskriterien erfüllen und eines der bei den Einschlusskriterien genannten Studiendesigns aufweisen, werden in die zu bewertende Literatur eingeschlossen. Alle übrigen Texte dienen potenziell als Hintergrundliteratur.

Tabelle 2: Selektionskriterien für die medizinischen Volltexte

<table>
<thead>
<tr>
<th>Einschlusskriterien</th>
<th>Formale Kriterien</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Veröffentlichte Publikationen in deutscher oder englischer Sprache</td>
</tr>
<tr>
<td></td>
<td>Medizinische Kriterien</td>
</tr>
<tr>
<td></td>
<td>Zielgruppe: erwachsene Personen</td>
</tr>
<tr>
<td></td>
<td>Untersuchung: Früherkennung und Diagnose von Dickdarmkrebs und/oder Vorstufen (Polypen, Adenome) mithilfe der CTC im Vergleich zur konventionellen Koloskopie</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiendesign</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prospektive Primärstudien mit Fallzahl > 50 Personen</td>
</tr>
<tr>
<td>Metaanalysen, HTA-Berichte, systematische Übersichtsarbeiten</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ausschlusskriterien</th>
<th>Formale Kriterien</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Studien, die nicht in deutscher oder englischer Sprache publiziert wurden</td>
</tr>
<tr>
<td></td>
<td>Veröffentlichte Publikationen bis einschließlich 2002</td>
</tr>
<tr>
<td></td>
<td>Bei Hintergrundartikeln zu verfahrenstechnischen Fragen: Publikationen bis einschließlich 2004, Primärstudien mit einer Fallzahl < 100 Personen</td>
</tr>
<tr>
<td></td>
<td>Duplicaten</td>
</tr>
<tr>
<td></td>
<td>Kongresspräsentationen/Poster, Editorials, Leserbriefe, Kommentare</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medizinische Kriterien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andere Verfahren/andere Untersuchungsmethoden (z. B. Sigmoidoskopie)</td>
</tr>
<tr>
<td>Andere Zielgruppe</td>
</tr>
<tr>
<td>Nicht zur Fragestellung passende Schwerpunktssetzung (z. B. therapeutische Verlaufskontrollen, sofern nicht relevant zur Bestätigung der Erstdiagnose; Staging; allgemeine Artikel zum Darmkrebs-Screening ohne Behandlung der CTC)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiendesign</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-vitro-Studien, genetische Studien, tierexperimentelle Studien</td>
</tr>
<tr>
<td>Fallstudien bzw. Fallserien (bis zehn Fälle)</td>
</tr>
</tbody>
</table>

CTC = Computertomografie-Koloskopie. HTA = Health Technology Assessment. Quelle: ÖBIG-FP-eigene Darstellung

6.4.2.2.2 Volltexte für die ökonomische Bewertung

Die dem ökonomischen Teil zugeordneten Volltexte werden anhand der in Tabelle 3 (Selektionskriterien für die ökonomischen Volltexte) angeführten Selektionskriterien geprüft. Alle Studien, die eines der Ausschlusskriterien erfüllen, werden ausgeschlossen. Alle Studien, die die formalen und medizinischen Einschlusskriterien erfüllen und eines der bei den Einschlusskriterien genannten Studiendesigns aufweisen, werden in die zu bewertende Literatur eingeschlossen. Alle übrigen Texte dienen, zuzüglich Lehrbuchliteratur u. ä., als Hintergrundliteratur.

Tabelle 3: Selektionskriterien für die ökonomischen Volltexte

<table>
<thead>
<tr>
<th>Einschlusskriterien</th>
<th>Formale Kriterien</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Veröffentlichte Publikationen ab einschließlich 2003</td>
</tr>
<tr>
<td></td>
<td>Medizinische Kriterien</td>
</tr>
<tr>
<td></td>
<td>Zielgruppe: erwachsene Personen</td>
</tr>
<tr>
<td></td>
<td>Untersuchung: Früherkennung und Diagnose von Dickdarmkrebs und/oder Vorstufen (Polypen, Adenome) mithilfe der CTC im Vergleich zur konventionellen Koloskopie</td>
</tr>
</tbody>
</table>

Fortsetzung Tabelle 3: Selektionskriterien für die ökonomischen Volltexte

<table>
<thead>
<tr>
<th>Studiendesign</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Kostenwirksamkeitsanalysen</td>
<td></td>
</tr>
<tr>
<td>• Kostennutzenanalysen</td>
<td></td>
</tr>
<tr>
<td>• Kostennutzwertanalysen</td>
<td></td>
</tr>
<tr>
<td>• Kostenminimierungsanalysen</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ausschlusskriterien</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Formale Kriterien</td>
<td></td>
</tr>
<tr>
<td>• Studien, die nicht in deutscher oder englischer Sprache publiziert wurden</td>
<td></td>
</tr>
<tr>
<td>• Duplicata</td>
<td></td>
</tr>
<tr>
<td>• Abstractpublikation</td>
<td></td>
</tr>
<tr>
<td>Medizinische Kriterien</td>
<td></td>
</tr>
<tr>
<td>• Anderes Verfahren/andere Untersuchungsart</td>
<td></td>
</tr>
<tr>
<td>• Andere Zielgruppe</td>
<td></td>
</tr>
<tr>
<td>• Nicht zur Fragestellung passende Schwerpunktsetzung bzw. zu allgemein, anderes Thema</td>
<td></td>
</tr>
<tr>
<td>Weitere Kriterien</td>
<td></td>
</tr>
<tr>
<td>• Studien ohne Bezug auf Deutschland oder ein vergleichbares Land (d. h. primär Europa, USA, Kanada, Australien, Neuseeland)</td>
<td></td>
</tr>
</tbody>
</table>

CTC = Computertomografie-Koloskopie. USA = United States of America (dt.: Vereinigte Staaten von Amerika).
Quelle: ÖBIG-FP-eigene Darstellung

6.4.2.2.3 Ethische, soziale und juristische Aspekte

Volltexte, die weder gemäß medizinischen noch ökonomischen Selektionskriterien eingeschlossen werden können, werden hinsichtlich ihrer Relevanz zur Darstellung ethischer, sozialer bzw. juristischer Aspekte der Fragestellung geprüft.

6.4.3 Bewertung der Studienqualität

6.4.3.1 Volltexte für die medizinische Bewertung

Zur Bewertung der Studienqualität der medizinischen Volltexte wird das Qualitätsschema von Raum/Perleth\(^{270}\) herangezogen, das für Studien zur diagnostischen Genauigkeit konzipiert ist. Folgende acht Kriterien werden beurteilt:

- Studiendesign/Protokoll (z. B. Setting, Untersuchungsabfolge, Ein- und Ausschlusskriterien)
- Beschreibung der Testverfahren (z. B. technische Charakteristika, Auswertungslogarithmus bei computergestützten Verfahren)
- Patientenselektion (z. B. Beschreibung der Studienpopulation, Methode der Rekrutierung der Patienten und eventueller Kontrollen, Definition der Kohorte bei retrospektiven Studien)
- Auswertung/Interpretation der Daten (z. B. blinde vs. offene Auswertung, Definition/Klassifikation der Testergebnisse)
- Datenanalyse und statistische Auswertung (z. B. Datenaufbereitung, Beschreibung und Begründung von Klassenbildung, Angabe von abgeleiteten Effektschätzern wie z. B. Sensitivität, Spezifität, prädiktiven Werte sowie Konfidenzintervallen)
- Charakteristika von Indexpatienten und Kontrollpatienten/Patientenfluss (z. B. Anzahl der untersuchten Patienten, Beschreibung der Studienpopulation, Ein- und Ausschlusskriterien)
- Diskussion designtypischer Biasformen
- Generalisierbarkeit (externe Validität) (z. B. Reproduzierbarkeit der Testergebnisse in anderen Settings bzw. Abhängigkeit von der Interpretation, Abhängigkeit bzw. Änderung der Richtung der Ergebnisse von Krankheitsstadium, Komorbidität, Alter, Geschlecht etc.)
6.4.3.2 Volltexte für die ökonomische Bewertung

In die nähere Bewertung eingeschlossene Publikationen werden gemäß der von Drummond et al. empfohlenen Zehn-Punkte-Checkliste für die Bewertung von ökonomischen Evaluationen geprüft. Für ökonomische Studien liegen keine international einheitlichen Bewertungskriterien vor. Die Checkliste wird als Hilfestellung bei der qualitativen Bewertung ökonomischer Modellrechnungen herangezogen.

Die Zehn-Punkte-Checkliste enthält folgende Bewertungskriterien:

1. Wurde eine ausreichend formulierte und beantwortbare Frage gestellt?
 Wurden sowohl Kosten als auch Effekte untersucht? Wurden Alternativen verglichen? Wurde die Perspektive für die Analyse angeführt?

2. Wurden die konkurrierenden Alternativen ausreichend beschrieben?
 Wurden alle relevanten Alternativen erwähnt?

3. Wurde die Wirksamkeit der Maßnahme begründet?
 Wurden die Ergebnisse auf Basis von randomisierten kontrollierten Studien gewonnen? Wurde reflektiert, was unter Alltagsbedingungen geschieht? Wurde eine systematische Übersichtsarbeit durchgeführt? Wurden Beobachtungsstudien herangezogen?

4. Wurden alle wesentlichen und relevanten Kosten und Wirkungen für jede Alternative identifiziert?
 Wurden alle relevanten Perspektiven angeführt (hierzu zählen die volkswirtschaftliche Perspektive, die Perspektive des Gesundheitswesens und der Patienten)? Wurden Kapital- ebenso wie Umsetzungskosten berücksichtigt?

5. Wurden Kosten und Wirkungen in geeigneten physischen Einheiten angeführt (beispielsweise Anzahl Pflegestunden, Anzahl Arztbesuche, Anzahl verordnete Medikamente, entgangene Produktivität pro Stunde oder Tag, gewonnene Lebensjahre)?
 Wurden Angaben zum Ressourcenverbrauch gemacht? Wurden alle wichtigen Parameter eingeschlossen? Wurde auf Bemessungsprobleme (z. B. bei gemeinsamer Ressourcennutzung) entsprechend Rücksicht genommen?

6. Wurden Kosten und Wirkungen glaubwürdig bewertet?
 Wurden Marktpreise herangezogen? Wenn ja, welche? Wurden administrative Preise (Tarife) herangezogen? Woher stammen die Kostendaten? Wurde eine für die Fragestellung geeignete Methode zur Bewertung der Wirkung (Wirksamkeit) herangezogen?

7. Wurden Kosten und Wirkungen für unterschiedliche Zeithorizonte angepasst?
 Wurden Kosten und Wirkungen, die in der Zukunft anfallen, auf den gegenwärtigen Wert diskontiert? Wurde der Diskontsatz angegeben und argumentiert, warum dieser verwendet wurde?

8. Wurde eine inkrementelle Analyse der Kosten und Wirkungen der Alternativen angeführt?
 Wurden zusätzliche bzw. inkrementelle Kosten einer Alternative den zusätzlichen Wirkungen gegenübergestellt?

9. Wurden Untersuchungen zur Validität der Abschätzungen von Kosten und Wirkungen durchgeführt?
 Wurden eine Sensitivitätsanalyse oder angemessene statistische Analysen durchgeführt? Wurden die gewählten Bandbreiten oder Verteilungen und die Form der Sensitivitätsanalyse begründet?

10. Beinhaltete die Studie alle für Anwender relevanten Fragestellungen?
 Wurden beispielsweise Kostenwirksamkeitsverhältnisse dargestellt? Wurden die Ergebnisse mit anderen Autoren verglichen und mögliche Abweichungen diskutiert? Wurde angesprochen, ob die Ergebnisse auf andere Settings übertragbar sind? Diskutierte die Studie andere relevante Fragestellungen, z. B. ethische? Wurden Aspekte der Umsetzung diskutiert?
6.4.4 Datenauswertung und Datensynthese

6.4.4.1 Volltexte für die medizinische Bewertung

6.4.4.2 Volltexte für die ökonomische Bewertung
Methodik und Ergebnisse der ausgewählten Literatur werden hinsichtlich wichtiger Parameter soweit sinnvoll in tabellarischer Form aufgearbeitet. Die Ergebnisse der bewerteten Studien werden einander gegenübergestellt. Die Übertragbarkeit der Resultate auf deutsche Verhältnisse wird überprüft.

6.4.4.3 Ethische, soziale und juristische Aspekte
Neben der Aufarbeitung von aus der Literatur gewonnenen Informationen werden ggf. aus Sicht des Autorenteams relevante Aspekte genannt und deskriptiv dargestellt.
Für die juristische Betrachtung werden relevante Aspekte in Gesetzestexten recherchiert und textlich dargestellt.

6.5 Ergebnisse

6.5.1 Ergebnisse der Erstselektion

6.5.2 Ergebnisse der Zweitselektion
Zum Zeitpunkt der Endberichterstellung liegen ohne Handsuche (siehe unten) 349 Volltexte vor. Nach der Selektion anhand der in Kapitel 6.4.4.2 (Volltexte) genannten Kriterien werden 147 Texte ausgeschlossen, 36 Publikationen werden für die medizinische und ökonomische Bewertung herangezogen. In Tabelle 4 (Ausgeschlossene Literatur) findet sich eine Aufstellung der ausgeschlossenen Literatur mit dem dazugehörigen Ausschlussgrund.
Tabelle 4: Ausgeschlossene Literatur

<table>
<thead>
<tr>
<th>Autoren</th>
<th>Ausschlussgrund</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.N. 2004, Vogt et al. 2004</td>
<td>Duplicata</td>
</tr>
<tr>
<td>Catalano et al. 2004</td>
<td>Studien, die nicht in deutscher oder englischer Sprache publiziert wurden</td>
</tr>
<tr>
<td>Berchi et al. 2004, Bote et al. 2004, Jacobi et al. 2003</td>
<td>Anderes Verfahren/andere Untersuchungsart</td>
</tr>
<tr>
<td>Inadomi 2003</td>
<td>Andere Zielgruppe</td>
</tr>
<tr>
<td>Kalra et al. 2006, Lin et al. 2006, Razek et al. 2005</td>
<td>Relevante medizinische Primärstudien retrospektiv, n < 50</td>
</tr>
<tr>
<td>Leshno et al. 2003, Wong et al. 2004, Wu et al. 2006</td>
<td>Ökonomische Studien ohne Bezug auf Deutschland oder ein vergleichbares Land (d. h. primär Europa, USA, Kanada, Australien, Neuseeland)</td>
</tr>
</tbody>
</table>

n = Anzahl. USA = United States of America (dt.: Vereinigte Staaten von Amerika).

Quelle: ÖBIG-FP-eigene Darstellung
6.5.3 Ergebnisse der Handsuche

Im Zuge der Internetrecherche und Prüfung von Literaturreferenzen der vorliegenden Studien werden insgesamt 35 Texte bzw. Bücher per Handsuche ergänzt.

6.5.4 Darstellung des Selektionsprozesses

In Abbildung 1 (Darstellung des Selektionsprozesses) ist der Selektionsprozess veranschaulicht.

Abbildung 1: Darstellung des Selektionsprozesses

* Vgl. Anhang, Abschnitt 8.3 (Suchstrategie).
** Inklusive zitierte Lehrbücher.

DIMDI = Deutsches Institut für medizinische Dokumentation und Information.

6.5.5 Ergebnisse der medizinischen Bewertung

6.5.5.1 Metaanalysen und systematische Übersichtsarbeiten

Tabelle 5 (Metaanalysen und systematische Übersichtsarbeiten) gibt einen Überblick über die einge- schlossenen Metaanalysen und die systematischen Übersichtsarbeiten.

<table>
<thead>
<tr>
<th>Autor(en)</th>
<th>Jahr</th>
<th>Titel</th>
<th>MA/SR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banerjee et al.15</td>
<td>2006</td>
<td>CT Colonography for Colon Cancer Screening</td>
<td>SR</td>
</tr>
<tr>
<td>Halligan et al.104</td>
<td>2005</td>
<td>CT Colonography in the Detection of Colorectal Polyps and Cancer: Systematic Review, Meta-Analysis, and Proposed Minimum Data Set for Study Level Reporting</td>
<td>MA/SR</td>
</tr>
<tr>
<td>Mulhall et al.215</td>
<td>2005</td>
<td>Meta-Analysis: Computed Tomographic Colonography</td>
<td>MA/SR</td>
</tr>
<tr>
<td>Blue Cross and Blue Shield Association223</td>
<td>2004</td>
<td>CT colonography (‘virtual colonoscopy’) for colon cancer screening</td>
<td>SR</td>
</tr>
<tr>
<td>Medical Advisory Secretariat, Ontario Ministry of Health and Long-Term Care238</td>
<td>2003</td>
<td>Computed Tomographic Colonography (virtual colonoscopy)</td>
<td>SR</td>
</tr>
<tr>
<td>Sosna et al.330</td>
<td>2003</td>
<td>CT Colonography of Colorectal Polyps: A Metaanalysis</td>
<td>MA</td>
</tr>
</tbody>
</table>

CT = Computertomografie. MA = Metaanalyse. SR = Systematische Übersichtsarbeit.
Quelle: ÖBIG-FP - eigene Darstellung

Banerjee et al.15

Effektivität und Effizienz der CT-Koloskopie im Vergleich zur konventionellen Koloskopie in der Darmkrebsdiagnose und -früherkennung

Die Primärstudien, die die CTC direkt mit der konventionellen Koloskopie vergleichen, werden in drei Kategorien eingeteilt (siehe Tabelle 19: Banerjee et al. 2006). Sechs zwischen 1997 und 2002 publizierte Studien mit Single- oder Multidetektorscannern an maximal 100 Personen mit meist erhöhtem KRK-Risiko werden dem niedrigsten Evidenzgrad (C) zugeordnet. Die Sensitivitätswerte pro Polyp für kleine (≤ 5 mm), mittelgroße (6 bis 9 mm) bzw. große (>10 mm) Polypen betrugen 11 bis 55 %, 34 bis 82 % bzw. 50 bis 91 %. Obwohl Sensitivitätswerte pro Patient für mittlere und große Polypen werden 43 bis 96 % und 60 bis 96 % angegeben, die Spezifität für mittelgroße Polypen liegt bei 58 bis 92 % und für große bei 60 bis 96 %.

Dem Evidenzgrad B entsprechen sieben größere Studien (Fallzahl: 105 bis 703, Multicenterstudie oder einzelnes Zentrum) mit Single- oder Multidetektorscannern an Populationen mit durchschnittlichem und erhöhtem Risiko für KRK. Die Publikationen stammen aus den Jahren 2000 bis 2004 und zeigen polypenbezogene Sensitivitäts- und Spezifitätswerte von 29 bis 82 % bei mittelgroßen und 32 bis 93 % bei großen Polypen. Pro Patient liegt die Sensitivität bei allen Polypengrößen zwischen 35 und 93 % und die Spezifität zwischen 88 und 97 %.

Dem höchsten Evidenzgrad (A) werden lediglich drei Studien zugeordnet, wobei es sich um große Multicenterstudien (Fallzahl: 614 bis 1.233 Personen) mit Multidetektorscannern handelt. Da diese Studien in Kapitel 6.5.5.2 (Primärstudien) ausführlich behandelt werden, sollen sie hier nicht separat dargestellt werden.

Banerjee und Van Dam gehen auch auf Ursachen für falsch negative und falsch positive Befunde ein sowie auf Ausbildung bzw. Training. Die Problematik von flachen und kleinen Polypen wird ebenso angesprochen wie extrakolonische Befunde, spezielle Situationen und Patientenpräferenzen.

Als Hauptursache für Wahrnehmungsfehler auf Befunderseite wird eine unzureichende Ausbildung angesehen. Als wesentliche Verbesserungsmöglichkeit wird der Einsatz von computerunterstützter Diagnostik auch eine Rolle zur Minimierung von Wahrnehmungsfehlern zugesprochen.

Hinsichtlich der Detektionsfähigkeit von flachen Polypen wird die CTC in der Arbeit von Banerjee und Van Dam eindeutig hinter die konventionelle Koloskopie gereiht, weil bei Letzterer visuell leichter Unterschiede im Vergleich zur normalen Dickdarmschleimhaut erkannt werden. Die Sensitivität der Koloskopie lässt sich noch verbessern durch besonders gründliche Darmreinigung und eine langsa-
mère koloskopische Untersuchungsgeschwindigkeit. Zusätzlich stehen mit der Chromoendoskopie und der hochaufloßsenden Endoskopie Verfahren zur Verfügung, die die Sensitivität noch weiter verbessern können. Es werden Untersuchungen zitiert, nach denen die Häufigkeit von flachen oder eingesunkenen Läsionen in den USA mit 23 % bei Screeninguntersuchungen und in Europa mit bis zu 36 % aller entfernten Adenome angegeben wird. Die Bedeutung der flachen Polypen hinsichtlich des Malignitätsrisikos kann nach Banerjee und Van Dam aufgrund der divergierenden Studienergebnisse in westlichen Populationen derzeit noch nicht eindeutig beurteilt werden. Es wird darauf hingewiesen, dass zukünftige Ergebnisse, die der Detektion und Entfernung flacher Polypen eine wesentliche Bedeutung zusprechen, die Rolle der CTC für das Screening auf KRK negativ beeinflussen würden.

Favorisiert wird von Banerjee und Van Dam die CTC bei Patienten mit inkompletter konventioneller Koloskopie (z. B. aus anatomischen Gründen oder wegen stenosierender Läsionen), wobei anzustreben ist, die Untersuchung noch am selben Tag durchzuführen. Insbesondere bei Patienten mit okklusivem KRK ist eine Evaluierung des proximalen Kolons präoperativ möglich und kann zuzätzlich auch Informationen zum Staging bieten.

Die Datenlage zur Präferenz einer der beiden Untersuchungsmethoden vonseiten der Patienten wird als unklar angesehen. Es gibt sowohl Studien, bei denen Patienten die konventionelle Koloskopie als unangenehmer empfinden, als auch Studien, bei denen die CTC als unangenehmer empfunden wird. Bei den zwei größten Studien zu dieser Fragestellung (n > 600) wird keine Präferenz angegeben, bzw. werden beide Untersuchungen als gleich unangenehm bezeichnet. Dies mag darauf zurückzuführen sein, dass die bei beiden Methoden notwendige Darmvorbereitung als schlimmster Teil der Untersuchung angegeben wird. Eine wesentliche Änderung der Patientenakzeptanz zugunsten der CTC sei zu erwarten, wenn – ohne qualitative Einbußen – die Optimierung der Stuhlmarkierung eine Darmvorbereitung im bisherigen Sinn nicht mehr notwendig macht.

Halligan et al.104

Von Halligan et al.104 wird auch die oft unvollständige Datenbeschreibung der ausgewerteten Studien behandelt. Beispielsweise wird die Methodik der Referenzkoloskopie häufig unzureichend beschrieben. Angaben zu inkomplett durchgeführten Koloskopien, aber auch Angaben zu nicht auswertbaren

Mulhall et al.

Die aktuellste Metaanalyse (mit systematischer Übersicht), die auch die höchste Anzahl an Studien (n = 33) eingeschlossen hat, stammt von Mulhall et al. von 2005. Aufgabe dieser Arbeit ist der systematische Vergleich der Testgüte von CTC im Vergleich zu konventioneller Koloskopie bzw. chirurgischer Evaluierung und die Einschätzung der Variablen, die die Testgüte beeinflussen. Methodik und wesentliche Ergebnisse sind in Tabelle 21 (Mulhall et al. 2005) zusammengefasst. Die patientenbezogene Sensitivität für die CTC liegt durchschnittlich bei 70 %, reicht aber von 21 % bis 96 %. Die Sensitivität steigt mit zunehmender Polypengröße von durchschnittlich 48 % bei Polypen < 6 mm auf 85 % bei Polypen > 9 mm an. Auffällig ist generell die statistische Heterogenität der Daten, die in erster Linie auf Unterschiede zwischen den einzelnen Studienergebnissen zurückgeführt wird. Die untersuchten Variablen/Parameter erläutern nur einen Teil der gefundenen Unterschiede. An Ursachen für die Heterogenität werden hauptsächlich drei gerätespezifische Elemente identifiziert. So gibt es bei dünnerer Kollimation naturgemäß bessere Sensitivitätswerte, wobei eine Zunahme der Kollimation um 1 mm die Sensitivität um fast 5 % senkt. Ein weiterer wesentlicher Einfluss hat der Detektoraufbau: Die in sieben Studien verwendeten Mehrzeilendetektoren haben eine höhere und homogenere Sensitivität (95 %) als Einzeilendetektoren (durchschnittlich 82 %, wobei hier eine ausgeprägte Heterogenität der Ergebnisse besteht). Als dritter für die Heterogenität verantwortlicher Parameter wird der Auswertungsmodus identifiziert. Sechs Studien, bei denen zwei- und dreidimensionale Auswertungen gemeinsam verwendet werden, zeigen eine höhere Sensitivität (91 %) bei geringerer Heterogenität als zehn Studien, die eine 3-D-Auswertung nur bei Bedarf verwenden (Sensitivität: 82 %). Die höchste Sensitivität (99 %) erreicht die „fly through“-Methodik, wobei dieser Wert allerdings nur auf zwei Studien basiert. Keinen Einfluss auf die Heterogenität der Sensitivitätswerte zeigen folgende Parameter: Publikationsjahr, Art der Scannerhardware oder -software, Rekonstruktionsintervall, Verwendung von Kontrastmittel und patientenbezogene Daten wie Alter, Geschlecht oder Risikokategorie. Im Gegensatz zur Sensitivität ist die patientenbezogene Spezifität zur Polypendetektion homogener und liegt insgesamt bei 85 %, wobei die Spezifitätswerte mit zunehmender Polypengröße ansteigen.

In ihrer Diskussion stellen Mulhall et al. fest, dass die CTC eine hohe Spezifität bei der Detektion von Polypen mit einer Größe von mehr als 9 mm erreicht. Da aber die Spezifitätswerte auch für große Polypen stark variieren und die Gründe für diese Variabilität auch durch ihre Analyse nicht vollständig erklärt werden kann, fordern sie diesbezüglich eine weitere Abklärung bzw. konsistente Daten, bevor die CTC als Screeningmethode zur Detektion von KRK generell empfohlen werden kann. An prinzipiellen Einschränkungen wird von Mulhall et al. angesprochen, dass die Mehrzahl der in ihrer Analyse eingeschlossenen Studien (n = 18) die konventionelle Koloskopie als Goldstandard heranziehen. Es wird erwähnt, dass die CTC Polypen bzw. Tumoren findet, die bei der konventionellen Koloskopie übersehen und erst durch segmentale Entblindung bzw. optimierte Koloskopie (Analyse diskrepanter Ergebnisse durch Videobegutachtung der Koloskopie) erkannt werden. Als weiterer Kritikpunkt, insbesondere hinsichtlich der Anwendbarkeit der CTC als Screeningmethode, wird von Mulhall et al. angesehen, dass nur drei eingeschlossene Studien unselektierte Personen untersuchen,

Blue Cross und Blue Shield Association

Medical Advisory Secretariat des Ontario Ministry of Health and Long-Term Care

Die Arbeit kommt außerdem zu dem Schluss, dass Patienten mit Darmsymptomatik oder mit positiver eigener bzw. familiärer Anamnese für Polypen mehr von einer konventionellen Koloskopie inklusive etwaiger Abtragung von Polypen profitieren als von einer CTC.

Es werden aber auch Indikationen zum Einsatz der CTC formuliert. Sie kann sinnvoll eingesetzt werden an Patienten, bei denen die Koloskopie kontraindiziert ist oder nicht vollständig durchgeführt werden kann. Zur präoperativen Abklärung bei Patienten mit KRK wird die CTC als Methode der ersten Wahl bezeichnet, weil nicht nur der Dickdarm vollständig dargestellt werden kann, sondern auch Veränderungen außerhalb des Dickdarms abgebildet werden können und außerdem ein Tumorstaging möglich ist.

Als prinzipieller Nachteil der CTC wird die Belastung mit ionisierenden Strahlen bezeichnet, wobei die Dosis bei Verwendung von Mehrzeilen-CT-Geräten steigt. Außerdem wird die Strahlenbelastung bei Frauen höher eingestuft als bei Männern. Brust und Eierstöcke sind radiosensible Organe, die bei der CTC strahlenbelastet werden, und aufgrund der geringeren Prädvalenz von KRK bei Frauen (im Vergleich zu Männern) in Kanada und der höheren Lebenserwartung wird der potenziell karzinogenen...
Effektivität und Effizienz der CT-Koloskopie im Vergleich zur konventionellen Koloskopie in der Darmkrebsdiagnose und -früherkennung

Wirkung ionisierender Strahlen eine höhere Bedeutung beigemessen als bei Männern. Diese Punkte sind ebenso wie andere Argumente, die bereits bei der Beschreibung der oben angeführten aktuell eren Arbeiten angeführt wurden (beispielsweise der nicht geregelte Umgang mit kleinen Polypen, Ausbildungsprobleme, technische Aspekte), beim Einsatz der CTC insbesondere im Rahmen des Screenings zu bedenken.

Sosna et al.330

Die älteste eingeschlossene Metaanalyse stammt von Sosna et al.330 von 2003. Die Ergebnisse basieren auf 14 Studien, wobei teilweise nur einzelne Subpopulationen (insgesamt 1.324 Patienten) ausgewertet werden (siehe Tabelle 24: Sosna et al. 2003). Die gepoolte patientenbezogene Sensitivität der CTC beträgt für Polypen mit einer Größe von mehr als 10 mm 88 %, bei Polypen mit einer Größe zwischen 6 und 9 mm 84 % und bei Polypen unter 5 mm 65 %. Die gepoolte Sensitivität bezogen auf Polypen beträgt bei Polypen mit einer Größe von mehr als 10 mm 81 %, bei 6 bis 9 mm 62 % und bei unter 5 mm großen Polypen 43 %. Die Autoren schließen aus ihren Daten, dass Sensitivität und Spezifität für Polypen mit einer Größe von mehr als 10 mm hoch sind. Die Berechnungen der gepoolten Sensitivität und Spezifität erfolgen nach drei verschiedenen Algorithmen, um die Konsistenz der Ergebnisse zu überprüfen. Dabei wird jedoch die Ursache der Heterogenität für die Sensitivitätswerte nicht analysiert, was von Mulhall et al. kritisiert wird.

6.5.5.2 Primärstudien

Es gibt nur wenige Studien, die Fallzahlen von mehreren hundert Personen bzw. Patienten umfassen. Diese sind in Tabelle 6 (Primärstudien mit mehr als 500 Probanden/Patienten) zusammengefasst und werden zunächst besprochen.

6.5.5.2.1 Primärstudien mit mehr als 500 Probanden/Patienten

<table>
<thead>
<tr>
<th>Erstautor (Jahr)</th>
<th>Titel</th>
<th>Setting: Screening/Diagnose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rockey et al.286 2005</td>
<td>Analysis of air contrast barium enema, computed tomographic colonography, and colonoscopy: prospective comparison</td>
<td>Diagnose</td>
</tr>
<tr>
<td>Cotton et al.50 2004</td>
<td>Computed Tomographic Colonography (Virtual Colonoscopy) A Multicenter Comparison With Standard Colonoscopy for Detection of Colorectal Neoplasia</td>
<td>Diagnose</td>
</tr>
<tr>
<td>Johnson et al.144 2003</td>
<td>Prospective Blinded Evaluation of Computed Tomographic Colonography for Screen Detection of Colorectal Polyps</td>
<td>Screening</td>
</tr>
<tr>
<td>Pickhardt et al.253 2003</td>
<td>Computed Tomographic Virtual Colonoscopy to Screen for Colorectal Neoplasia in Asymptomatic Adults</td>
<td>Screening</td>
</tr>
</tbody>
</table>

Quelle: ÖBIG-FP-eigene Darstellung

Rockey et al.286

Bei der Studie von Rockey et al.286 handelt es sich um eine Multicenterstudie (14 Zentren, überwiegend Universitätskliniken), bei der die 614 Personen mit erhöhtem Risiko für KRK mittels konventioneller Koloskopie, CTC und Doppelkontraströntgen des Dickdarms untersucht werden (siehe Tabelle 25: Rockey et al. 2005). Es werden zumindest Vierzeilendetektoren verwendet und sowohl in Bauch- als auch Rückenlage untersucht. Jedoch werden primär 2-D-Bilder beurteilt und 3-D-Aufnahmen nur bei Auswertungsproblemen. CTC-Befunder, die erst weniger als 50 Fälle beurteilten, erhielten eine Schulung. Bei der konventionellen Koloskopie erfolgt eine segmentale Entblindung. Die endgültige Beurteilung der Läsionen mit einer Größe von mindestens 6 mm, die sowohl beim Röntgen als auch in der CTC, nicht jedoch in der konventionellen Koloskopie beschrieben werden, erfolgt durch ein unabhängiges Komitee verblindet. Bei weiter bestehender Befunddiskrepanz wird die Wiederholung von Untersuchungen empfohlen. Auf den Patienten bezogen ergibt sich bei Läsionen mit einer Größe von 10 mm oder mehr eine Sensitivität von 98 % für die konventionelle Koloskopie und von 59 % für die CTC. Bei Läsionen mit einer Größe von 6 bis 9 mm beträgt die Sensitivität 99 % bei der konventionellen Koloskopie und 51 % bei der CTC. Die Sensitivitätswerte für das Doppelkontraströntgen sind schlechter als für die CTC (48 % bzw. 35 %). Auch hinsichtlich der Spezifität zeigt die konventionelle Koloskopie die besten Ergebnisse (99,6 % bei allen Läsionsgrößen über 6 mm), während bei CTC und Doppelkontraströntgen des Dickdarms die Spezifität geringer ist und abnimmt, je kleiner die Läsionen sind. Bei der auf Läsionen bezogenen Auswertung erzielt die CTC bei Läsionen mit ≥ 10 mm eine Sensitivität von 53 % im Vergleich zu 99 % bei der Koloskopie (bei der Polyenergröße 6 bis 9 mm 47 % bzw. 99 %). Läsionen mit einer Größe unter 5 mm werden überhaupt nicht erfasst.

In der genannten Studie wird auch die Qualität der Darmvorbereitung in definierte Kategorien eingeteilt und bewertet. Dabei ist kein signifikanter Einfluss auf die Sensitivität der Untersuchungen festzustellen. Außerdem wird die Erfahrung der CTC-Befunder berücksichtigt. CTC-Befunder mit weniger Vorerfahrung entdeckten mehr Läsionen als Befunder mit mehr Vorerfahrung, was in der Diskussion auf die Schulung zurückgeführt wird. Diese Studie zeigt somit auch, dass neben der Erfahrung auch die Schulung bzw. Wahrnehmungserfahrung bei der CTC eine wesentliche Bedeutung haben können. In der Diskussion wird vermutet, dass die unterschiedlichen Ergebnisse beim Vergleich der Sensitivität zwischen CTC und konventioneller Koloskopie zum Teil auch auf spezifischen Softwareunterschieden beruhen könnten.

Cotton et al.60

Johnson et al.144

Pickhardt et al.253

nicht-adenomatöse Polypen. Mehr als 80 % waren 5 mm oder kleiner. Es zeigt sich, dass die CTC weniger sensitiv ist in der Detektion von Polypen ohne malignes Potenzial als mit malignem Potenzial. Eine weitere Folgepublikation beleuchtet die computerunterstützte Diagnostik, und eine Arbeit zeigt, dass eine bestehende Divertikulose die Diagnostik von Polypen bei der CTC nicht beeinträchtigt.

Aktuelle Studien

Kürzlich durchgeführte große Studien, die im vorliegenden Bericht nicht-systematisch in der Literatursuche erfasst und ausgewertet sind, da sie nach dem Suchzeitraum publiziert wurden, zeigen interessante Ergebnisse und werden hier kurz zusammengefasst: Eine bereits publizierte Studie, bei der in einem einzelnen Zentrum zwei parallel laufende Screeningprogramme für CTC und konventionelle Koloskopie an jeweils mehr als 3.000 Personen verglichen werden, zeigt, dass die Detektionsraten für fortgeschrittene Neoplasien (Adenome und Karzinome) in beiden Gruppen (von denen eine mit CTC und eine mit Koloskopie untersucht wurde) bei 3 % liegen und somit ähnlich sind. Im Herbst 2007 wurden mehrere große direkte Vergleichsstudien auf Kongressen präsentiert, die noch nicht als Vollpublikationen vorliegen. Die umfangreichste ist eine amerikanische Multicenterstudie (National CT Colonography Trial/ACRIN 6664), bei der an über 2.500 ausgewerteten asymptomatischen Screeningpatienten die patientenbezogene Sensitivität der CTC für Adenome mit mindestens 10 mm Größe bei 90 % liegt. Wesentliche technische Merkmale dieser Studie sind die Verwendung von mindestens 16-Zeilen-Detektoren, Mindestanprüche für Kollimation und Rekonstruktionsintervall, Untersuchung in Bauch- und Rückenlage sowie Stuhlmarkierung. Großer Wert wurde auf die Ausbildung gelegt, die bei CTC-Befunden mit weniger als 500 Fällen ein Trainingsprogramm vorsieht und jedenfalls die Absolvierung eines Exams, bei dem bei 50 Fällen zumindest 90 % aller Adenome mit 10 mm oder größter detektiert werden müssen. Bei einem Grenzwert von 6 mm Polyppengröße wäre bei 8 % der mittels CTC untersuchten Personen eine Zuweisung zu einer Polyppektomie notwendig gewesen. Eine italienische Multicenterstudie an ca. 1.000 Patienten ohne Symptomatik, jedoch mit deutlich erhöhtem Risiko für Polypen bzw. KRK, erzielt für die CTC eine patientenbezogene Sensitivität von 84 % für Adenome und Karzinome von 6 mm oder größer. Auch bei dieser Studie gab es hohe Qualitätsanforderungen bezüglich technischer Aspekte sowie bei Ausbildung und Auswertung. Eine Screeninguntersuchung aus dem deutschsprachigen Raum zeigt bei über 300 ausgewerteten Fällen bei der CTC (64-Zeilen-Detektor, Kollimation 0,6 mm, effektive Schichtdicke 0,75 mm) eine patientenbezogene Sensitivität von 93 % und eine polypenbezogene Sensitivität von 95 % für Adenome ab inklusive 9 mm.

6.5.5.2.2 Primärstudien mit weniger als 500 Probanden/Patienten

Tabelle 7 (Primärstudien mit weniger als 500 Probanden/Patienten) gibt eine Übersicht über Primärstudien mit weniger als 500 Teilnehmern bzw. Patienten. Die Zahl an untersuchten Personen liegt zwischen 51 und 249. (Studien mit weniger als 50 Teilnehmern liegen gemäß den in Abschnitt 6.4.2.2.1 (Volltexte) definierten Kriterien nicht vor.)

Tabelle 7: Primärstudien mit weniger als 500 Probanden/Patienten

<table>
<thead>
<tr>
<th>Erstautor und Jahr</th>
<th>Titel</th>
<th>Probanden-/Patientenanzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>MacCarty et al.201</td>
<td>Occult Colorectal Polyps on CT Colonography: Implications for Surveillance</td>
<td>75</td>
</tr>
<tr>
<td>Reuterskiöld et al.275</td>
<td>Diagnostic Performance of Computed Tomography Colonography in Symptomatic Patients and in Patients with Increased Risk for Colorectal Disease</td>
<td>111</td>
</tr>
<tr>
<td>Arnesen et al.7</td>
<td>Missed Lesions and False-Positive Findings on Computed-Tomographic Colonography: a Controlled Prospective Analysis</td>
<td>100</td>
</tr>
<tr>
<td>Iannaccone et al.332</td>
<td>Colorectal Polyps: Detection with Low-Dose Multi-Detector Row Helical CT Colonography versus Two Sequential Colonoscopies</td>
<td>88</td>
</tr>
</tbody>
</table>
Fortsetzung Tabelle 7: Primärstudien mit weniger als 500 Probanden/Patienten

<table>
<thead>
<tr>
<th>Erstautor</th>
<th>Jahr</th>
<th>Titel</th>
<th>Probanden-/Patientenanzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Park et al.248</td>
<td>2005</td>
<td>False-Negative Results at Multi-Detector Row CT Colonography: Multivariate Analysis of Causes for Missed Lesions</td>
<td>56</td>
</tr>
<tr>
<td>Wessling et al.305</td>
<td>2005</td>
<td>Virtual colonography: Identification and differentiation of colorectal lesions using multi-detector computed tomography</td>
<td>78</td>
</tr>
<tr>
<td>Bruzzi et al.37</td>
<td>2004</td>
<td>Colonic surveillance by CT colonography using axial images only</td>
<td>82</td>
</tr>
<tr>
<td>Cohnen et al.36</td>
<td>2004</td>
<td>Feasibility of MDCT Colonography in Ultra-Low-Dose Technique in the Detection of Colorectal Lesions: Comparison with High-Resolution Video Colonoscopy</td>
<td>137</td>
</tr>
<tr>
<td>Hoppe et al.120</td>
<td>2004</td>
<td>Prospective Comparison of Contrast Enhanced CT Colonography and Conventional Colonoscopy for Detection of Colorectal Neoplasms in a Single Institutional Study Using Second-Look Colonoscopy with Discrepant Results</td>
<td>100</td>
</tr>
<tr>
<td>Iannaccone et al.134</td>
<td>2004</td>
<td>Computed Tomographic Colonography Without Cathartic Preparation for the Detection of Colorectal Polyps</td>
<td>203</td>
</tr>
<tr>
<td>Macari et al.200</td>
<td>2004</td>
<td>Colorectal Polyps and Cancers in Asymptomatic Average-Risk Patients: Evaluation with CT Colonography</td>
<td>68</td>
</tr>
<tr>
<td>Macari et al.199</td>
<td>2004</td>
<td>Significance of Missed Polyps at CT Colonography</td>
<td>186</td>
</tr>
<tr>
<td>Van Gelder et al.397</td>
<td>2004</td>
<td>Computed Tomographic Colonography Compared with Colonoscopy in Patients at Increased Risk for Colorectal Cancer</td>
<td>249</td>
</tr>
<tr>
<td>Vogt et al.362</td>
<td>2004</td>
<td>Detection of colorectal polyps by multislice CT colonography with ultra-low-dose technique: comparison with high-resolution videocolonoscopy</td>
<td>115</td>
</tr>
<tr>
<td>Ginnerup Pederson et al.97</td>
<td>2003</td>
<td>Colonoscopy and Multidetector-Array Computed-Tomographic Colonography: Detection Rates and Feasibility</td>
<td>148</td>
</tr>
<tr>
<td>Iannaccone et al.133</td>
<td>2003</td>
<td>Detection of Colorectal Lesions: Lower-Dose Multi-Detector Row Helical CT Colonography Compared with Conventional Colonoscopy</td>
<td>158</td>
</tr>
<tr>
<td>Munirikshnan et al.216</td>
<td>2003</td>
<td>Prospective Study Comparing Multislice CT Colonography with Colonoscopy in the Detection of Colorectal Cancer and Polyps</td>
<td>80</td>
</tr>
<tr>
<td>Pineau et al.262</td>
<td>2003</td>
<td>Virtual Colonoscopy Using Oral Contrast Compared with Colonoscopy for the Detection of Patients with Colorectal Polyps</td>
<td>205</td>
</tr>
<tr>
<td>Thomeer et al.349</td>
<td>2003</td>
<td>Stool Tagging Applied in Thin-slice Multidetector Computed Tomography Colonography</td>
<td>150</td>
</tr>
</tbody>
</table>

CT = Computertomografie. MDCT = Multidetektorcomputertomografie.

Quelle: ÖBIG-FP-eigene Darstellung

Zehn der 19 Studien sind in zumindest einer der in Abschnitt 6.5.5.1 (Metaanalysen und systematische Übersichtsarbeiten) beschriebenen systematischen Übersichtsarbeiten bzw. Metaanalysen eingeschlossen37, 97, 120, 134, 199, 200, 216, 262, 349, 357, eine Studie262 ist in vier Arbeiten eingeschlossen. Alle Studien sind im Anhang tabellarisch dargestellt und beurteilt. Im folgenden Text werden primär die Studien beschrieben, die nicht in Übersichtsarbeiten bzw. Metaanalysen erfasst sind. Es handelt sich großteils um Arbeiten, die an einzelnen Zentren durchgeführt worden sind. Die Fallzahlen sind teilweise relativ gering, weshalb die Aussagekraft oft eingeschränkt ist.

Auch eine deutsche Arbeit von Arnesen et al.7 beruht auf den Daten eines Einzelendetektors. Befunde von 100 Patienten stehen zur Verfügung. Primäre Fragestellung dieser Untersuchung ist die Analyse der Gründe für falsch negative Befunde der CTC. Als Hauptursachen werden Wahrnehmungsfehler identifiziert und insbesondere bei flachen Läsionen Fehlinterpretationen.
Dagegen kommt eine amerikanische Untersuchung von MacCarty201 bei derselben Fragestellung – allerdings bei einem Patientenkollektiv, das bereits zumindest einmal innerhalb der letzten fünf Jahre gescreent worden ist und bei dem teilweise schon Polypen entfernt worden sind – zu dem Schluss, dass auch Polypen über 5 mm Größe in der CTC oft nicht dargestellt und seltener Wahrnehmungs- bzw. technische Fehler die Ursache für falsch negative Befunde sind.

Eine koreanische Arbeit von Park et al.248 kommt anhand der Analyse von falsch negativen Befunden der CTC bei 56 Personen zu dem Schluss, dass inadäquate Darmvorbereitung bzw. -distension, aber auch flache Läsionen und kleine Polypen die Hauptursachen für falsch negative Befunde der CTC sind.

Iannacone et al.132 untersuchen 88 Patienten mit Niedrigdosis-CTC und konventioneller Koloskopie und ziehen als Referenzstandard eine zweite konventionelle Koloskopie heran, die unter Kenntnis der Vorbefunde durchgeführt wird. Die Autoren schließen aus den Ergebnissen, dass die Niedrigdosis-CTC gute Ergebnisse im Vergleich zur Koloskopie zeigt. Beispielsweise beträgt die polypenbezogene Sensitivität bei der CTC für Polypen über 6 mm 86 % und für die initiale Koloskopie 84 % und für alle Polypengrößen 62 % bzw. 83 %.

Eine deutsche Untersuchung von Wessling et al.369 findet bei einem kleinen Kollektiv von 78 Patienten bei insgesamt 26 Personen drei Karzinome und 49 Polypen, wobei alle drei Karzinome und 39 Polypen auch mittels CTC gefunden werden.

6.5.6 Ergebnisse der ökonomischen Bewertung

Anhand der in Tabelle 3 (Selektionskriterien für die ökonomischen Volltexte) angegebenen Selektionskriterien werden vier Kostenwirksamkeitsanalysen114, 175, 176, 359 in die zu bewertende Literatur eingeschlossen und acht Texte ausgeschlossen.

Tabelle 8: In die Bewertung eingeschlossene ökonomische Studien

<table>
<thead>
<tr>
<th>Autor(en)</th>
<th>Jahr</th>
<th>Titel</th>
<th>Studiendesign</th>
<th>Land</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hassan et al.108</td>
<td>2007</td>
<td>Colon cancer prevention in Italy: Cost-effectiveness analysis with CT colonography and endoscopy.</td>
<td>Kostenwirksamkeitsanalyse, Markovmodell</td>
<td>Italien</td>
</tr>
<tr>
<td>Vijan et al.359</td>
<td>2007</td>
<td>The cost-effectiveness of CT colonography in screening for colorectal neoplasia.</td>
<td>Kostenwirksamkeitsanalyse, Markovmodell</td>
<td>USA</td>
</tr>
<tr>
<td>Heitman et al.114</td>
<td>2005</td>
<td>Cost-effectiveness of computerized tomographic colonography versus colonoscopy for colorectal cancer screening.</td>
<td>Kostenwirksamkeitsanalyse, Markovmodell</td>
<td>Kanada</td>
</tr>
<tr>
<td>Ladabaum et al.175</td>
<td>2005</td>
<td>Projected national impact of colorectal cancer screening on clinical and economic outcomes and health services demand.</td>
<td>Kostenwirksamkeitsanalyse, Markovmodell</td>
<td>USA</td>
</tr>
</tbody>
</table>
Fortsetzung Tabelle 8: In die Bewertung eingeschlossene ökonomische Studien

<table>
<thead>
<tr>
<th>Autor(en)</th>
<th>Jahr</th>
<th>Titel</th>
<th>Studiendesign</th>
<th>Land</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ladabaum et al.</td>
<td>2004</td>
<td>Colorectal neoplasia screening with virtual colonoscopy: when, at what cost, and with what national impact.</td>
<td>Kostenwirksamkeitsanalyse, Entscheidungsbaumanalyse</td>
<td>USA</td>
</tr>
</tbody>
</table>

CT = Computertomografie. USA = United States of America (dt.: Vereinigte Staaten von Amerika).
Quelle: ÖBIG-FP-eigene Darstellung

6.5.6.1 Beschreibung der Modellrechnungen und ihrer Ergebnisse

Alle fünf Modellrechnungen beziehen sich auf ein Screeningsetting und vergleichen die direkten Kosten verschiedener Untersuchungs- und Behandlungspfade mit der Wirksamkeit in Form von gewonnenen Lebensjahren. Entsprechend den gängigen Screeningempfehlungen untersuchen alle eine Modellpopulation von (anfänglich) 50-jährigen Personen mit durchschnittlichem Dickdarmkrebsrisiko, die sich in bestimmten zeitlichen Abständen einem Screening unterziehen. Vier Studien beziehen die Alternative „kein Screening“ mit ein. Die jeweils zum Vergleich herangezogenen Untersuchungsverfahren sind ebenfalls unterschiedlich, nicht nur hinsichtlich der eingesetzten Screeningtests, sondern teilweise auch hinsichtlich der Screeningintervalle und der technischen Ausstattung. Tabelle 9 (Vergleichene Untersuchungsalternativen) gibt einen Überblick.

Tabelle 9: Vergleichene Untersuchungsalternativen

<table>
<thead>
<tr>
<th>Autor(en)</th>
<th>Vergleichene Alternativen</th>
<th>Modellzeitraum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hassan et al. 2007</td>
<td>1. Kein Screening 2. 10-Jahres-Screening mit Sigmoidoskopie 3. 10-Jahres-Screening mit CTC 4. 10-Jahres-Screening mit Koloskopie</td>
<td>30 Jahre</td>
</tr>
<tr>
<td>Heitman et al. 2005</td>
<td>1. (Einmaliges) Screening mit CTC 2. (Einmaliges) Screening mit Koloskopie</td>
<td>3 Jahre</td>
</tr>
<tr>
<td>Ladabaum et al. 2004</td>
<td>1. Kein Screening 2. 10-Jahres-Screening mit Koloskopie 3. 10-Jahres-Screening mit CTC</td>
<td>50 Jahre (Screening bis zu einem Alter von 80)</td>
</tr>
</tbody>
</table>

CTC = Computertomografie-Koloskopie. DNA = Desoxyribonukleinsäure. 2-D = Zweidimensional. 3-D = Dreidimensional. Quelle: ÖBIG-FP-eigene Darstellung, Hassan et al. 108, Vigan et al. 359, Ladabaum et al. 175, Heitman et al. 114, Ladabaum et al. 176

Alle Studien untersuchen (im Basisszenario) die direkten Kosten pro gewonnenes Lebensjahr aus der Perspektive der Drittzahler im Gesundheitswesen (öffentliche Versicherung bzw. staatlicher Gesundheitsdienst). Dies sind im Wesentlichen die Kosten der jeweiligen Untersuchung, der Behandlung allfälliger Komplikationen und der Behandlung bei Krebs (vgl. Tabelle 10: Eingeschlossene Kosten). Die gewonnenen Lebensjahre resultieren aus der Senkung der Dickdarmkrebssterblichkeit. Vier Studien berücksichtigen eine geringfügige Mortalitätsrate infolge von Komplikationen bei den endoskopischen Verfahren, zwei Studien (desselben Autors) berücksichtigen auch...
eine Sterblichkeitsrate durch Krebsbehandlung. Bei allen Studien finden sich Ergebnisse zur Senkung der Dickdarmkrebsinzidenz, die in den Modellrechnungen allerdings nur Einfluss auf die Krebsbehandlungskosten hat, da eine Berücksichtigung der Lebensqualität nicht stattfindet.

Tabelle 10: Eingeschlossene Kosten

<table>
<thead>
<tr>
<th>Autor(en)</th>
<th>Eingeschlossene Kosten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hassan et al. 2007</td>
<td>• Untersuchungskosten CTC, Sigmoidoskopie, Koloskopie, Polypektomie
• Kosten Komplikationen (Blutung, Kolonperforation)
• Kosten Krebsbehandlung (getrennt nach frühem und spätem Stadium)</td>
</tr>
<tr>
<td>Vijan et al. 2007</td>
<td>• Untersuchungskosten CTC, Okkultbluttest, Sigmoidoskopie, Koloskopie, Polypektomie inklusive Biopsie
• Kosten Komplikationen (Kolonperforation)
• Kosten Krebsbehandlung (getrennt nach lokalen, regionalen und disseminierten Karzinomen)</td>
</tr>
<tr>
<td>Heitman et al. 2005</td>
<td>• Untersuchungskosten CTC, Koloskopie, Polypektomie
• Kosten Komplikationen (Kolonperforation, Blutung)
• Kosten Krebsbehandlung (nur lokale Karzinome)</td>
</tr>
<tr>
<td>Ladabaum et al. 2005</td>
<td>• Untersuchungskosten CTC, Okkultbluttest, Sigmoidoskopie, Koloskopie, Polypektomie bzw. Biopsie, DNA-Stuhltest
• Kosten Komplikationen bei Endoskopie (k. nähere A.)
• Kosten Krebsbehandlung (getrennt nach lokalen, regionalen und disseminierten Karzinomen)</td>
</tr>
<tr>
<td>Ladabaum et al. 2004</td>
<td>• Untersuchungskosten CTC, Koloskopie, Polypektomie bzw. Biopsie
• Kosten Komplikationen bei Endoskopie (k. nähere A.)
• Kosten Krebsbehandlung (getrennt nach lokalen, regionalen und disseminierten Karzinomen)</td>
</tr>
</tbody>
</table>

1 Über einen 3-Jahreszeitraum modellierte Entscheidungsbaumanalyse, Folgekosten durch spätere Krebsbehandlung werden addiert.

CTC = Computertomografie-Koloskopie. DNA = Desoxyribonukleinsäure. k. nähere A. = keine nähere Angabe.
Quelle: ÖBIG-FP - eigene Darstellung, Hassan et al.108, Vijan et al.359, Ladabaum et al.175, Heitman et al.114, Ladabaum et al.176

Die genaue Aufschlüsselung aller extrahierten Studiendaten findet sich in Tabelle 48 (Hassan et al. 2007) bis Tabelle 52 (Ladabaum et al. 2004).

6.5.6.1.1 Bewertung der Studienqualität

Es gibt beim Dickdarmkrebscreening eine auffallend hohe Zahl an möglichen Screeningtests. Hierzu zählen sowohl etablierte als auch innovative Verfahren. Nationale Richtlinien zeigen teilweise unterschiedliche Empfehlungen. In der Fragestellung des vorliegenden HTA-Berichts geht es aus-
Effektivität und Effizienz der CT-Koloskopie im Vergleich zur konventionellen Koloskopie in der Darmkrebsdiagnose und -früherkennung

schließlich um den Vergleich der CTC zur konventionellen Koloskopie (im Diagnose- oder Screening-setting). In Hinblick darauf ist die Auswahl der Alternativen bei allen Studien ausreichend. Bei Heitmann et al. 114 fehlt die Alternative „kein Screening“. Die Kosteneffektivität eines Dickdarmkrebs-screenings an sich scheint jedoch der Literatur zufolge für die meisten gängigen Alternativen belegt zu sein.

Anmerkungen zu den einzelnen extrahierten Daten hinsichtlich mangelnder Qualität bzw. Transparenz finden sich auch in Tabelle 48 (Hassan et al. 2007) bis Tabelle 52 (Ladabaum et al. 2004) im Anhang.

6.5.6.1.2 Ergebnisse

Basisszenarien

Die Ergebnisse der Modellrechnungen zeigen, dass sowohl die konventionelle Koloskopie als auch die CTC als kosteneffektive Screeningverfahren eingestuft werden können. Die Kosten, den Dritzzahlern des Gesundheitswesens (öffentliche Versicherung bzw. staatlicher Gesundheitsdienst) für jedes durch das Screening gewonnene Lebensjahr entstehen, bewegen sich je nach Studie zwischen 8.090 und 18.800 USD bei der konventionellen Koloskopie und zwischen 8.150 und 33.800 USD bei der CTC (vgl. Tabelle 11: Ergebnisse der Modellrechnungen im Basisszenario). Bei Hassan et al. 108 werden im Vergleich zu einer Situation, in der kein Screening stattfindet, mit beiden Verfahren sogar Kosten eingespart (zurückzuführen auf die deutlich geringeren Untersuchungskosten für das italienische Setting). In US-amerikanischen Settings wird häufig ein Grenzwert von 50.000 USD pro gewonnenes Lebensjahr angenommen, bis zu dem eine Maßnahme aus ökonomischer Sicht als akzeptabel eingestuft wird, bei Screeningprogrammen manchmal auch 100.000 USD.

Die Ergebnisse lassen jedoch auch die Schlussfolgerung zu, dass die Koloskopie aus ökonomischer Sicht der CTC vorzuziehen ist: Vergleicht man die Verfahren untereinander, so zeigt sich, dass die konventionelle Koloskopie fast ausnahmslos zu mehr gewonnenen Lebensjahren führt und gleichzeitig unter den meisten Annahmen auch weniger kostet als die CTC-Verfahren. Die Ausnahme bildet das
Effektivität und Effizienz der CT-Koloskopie im Vergleich zur konventionellen Koloskopie in der Darmkrebsdiagnose und -früherkennung

CTC-Screening mit dreidimensionaler Darstellung im Fünfjahresabstand. Dieses ist wirksamer als die Koloskopie, führt jedoch pro zusätzlich gewonnenen Lebensjahr zu Mehrkosten von 156.000 USD gegenüber einem Zehnjahresscreening mit der konventionellen Koloskopie (vgl. Tabelle 11: Ergebnisse der Modellrechnungen im , Ergebnisse der inkrementellen Kostenwirksamkeit bei Vijan et al.359). In der Modellrechnung von Hassan et al.108 ist es genau umgekehrt, d. h., das Koloskopie-Screening ist wirksamer und kostet mehr, allerdings betragen hier die zusätzlichen Kosten pro gewonnenes Lebensjahr nur rund 15.000 Euro (vgl. Tabelle 11: Ergebnisse der Modellrechnungen im Basisszenario, Ergebnisse der inkrementellen Kostenwirksamkeit bei Hassan et al.).

Tabelle 11: Ergebnisse der Modellrechnungen im Basisszenario

<table>
<thead>
<tr>
<th>Autor(en)</th>
<th>Ergebnisse zur inkrementellen Kostenwirksamkeit im Vergleich zu „kein Screening“</th>
</tr>
</thead>
</table>
| Hassan et al. 2007 | • Simoidoskopie: -579 Euro
 | • CTC: 1.274 Euro
 | • Koloskopie: -281 Euro |
| Vijan et al. 2007 | • 2-D-CTC (5 J.): 14.290 USD
 | • 2-D-CTC (10 J.): 17.280 USD
 | • 3-D-CTC (5 J.): 13.460 USD
 | • 3-D-CTC (10 J.): 8.150 USD
 | • Okkultbluttest: 5.360 USD
 | • Sigroidskopie (5 J.): 23.830 USD
 | • Okkultbluttest + Sigroidskopie (5 J.): 18.000 USD
 | • Koloskopie (10 J.): 8.090 USD |
| Heitman et al. 2005 | – |
| Ladabaum et al. 2005 | • Okkultbluttest: 8.100 USD
 | • Sigroidskopie: 17.300 USD
 | • Okkultbluttest + Sigroidskopie: 18.700 USD
 | • Koloskopie: 18.800 USD
 | • DNA-Stuhlttest base case1: 73.200 USD
 | • DNA-Stuhlttest optimized1: 31.000 USD
 | • CTC base case2: 28.700 USD
 | • CTC Pickhardt2: 26.600 USD |
| Ladabaum et al. 2004 | • Koloskopie: 18.800 USD
 | • CTC Cotton5: 33.800 USD
 | • CTC base case5: 28.700 USD
 | • CTC Pickhardt5: 26.600 USD |
| Autor(en) | Ergebnisse zur inkrementellen Kostenwirksamkeit im Vergleich der Verfahren untereinander |
| Hassan et al. 2007 | • Sigroidskopie wird von CTC dominiert
 | • Koloskopie vs. Sigroidskopie: 721 Euro
 | • Koloskopie vs. CTC: 15.091 Euro |
| Vijan et al. 2007 | • 3-D-CTC dominant gegenüber 2-D-CTC
 | • 3-D-CTC (5 J.) gegenüber
 | ○ Okkultbluttest: 22.400 USD
 | ○ Sigroidskopie (5 J.): CTC dominant
 | ○ Okkultbluttest + Sigroidskopie (5 J.): CTC ist dominant
 | ○ Koloskopie (10 J.): 156.000 USD
 | • 3-D-CTC (10 J.) gegenüber
 | ○ Okkultbluttest: 13.480 USD
 | ○ Sigroidskopie (5 J.): CTC dominant
 | ○ Okkultbluttest + Sigroidskopie (5 J.) gegenüber
 | ○ 3-D-CTC (10 J.): 84.160 USD
 | • Koloskopie (10 J.) gegenüber
 | ○ 3-D-CTC (10 J.): Koloskopie schwach dominant |
Fortsetzung Tabelle 11: Ergebnisse der Modellrechnungen im Basisszenario

<table>
<thead>
<tr>
<th>Autor(en)</th>
<th>Ergebnisse zur inkrementellen Kostenwirksamkeit im Vergleich zu „kein Screening“</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heitman et al. 2005</td>
<td>• Koloskopie dominant gegenüber CTC</td>
</tr>
<tr>
<td>Ladabaum et al. 2005</td>
<td>–</td>
</tr>
</tbody>
</table>
| Ladabaum et al. 2004 | • CTC base case² gegenüber
 ○ CTC Cotton³: 6.100 USD
 ○ CTC Pickhardt³ gegenüber
 ○ CTC Cotton³: 5.400 USD
 ○ CTC base case³: 4.100 USD
 • Koloskopie dominant gegenüber allen CTC-Alternativen |

¹ Keine Erläuterung im Text, jedoch Verweis auf frühere Publikation.
² Basierend auf verschiedenen Literaturquellen.
³ Basierend auf Cotton et al. 2004⁶⁶.
Quelle: ÖBIG-FP-eigene Darstellung, Hassan et al.¹⁰⁸, Vijan et al.³⁵⁹, Ladabaum et al.¹⁷⁵, Heitman et al.¹¹⁴, Ladabaum et al.¹⁷⁸

Sensitivitätsanalysen

Als einflussreiche Parameter in der Sensitivitätsanalyse zeigen sich in allen Studien die Untersuchungskosten und die Compliance. Einfluss haben teilweise auch die Sensitivität der CTC für Polypen größer gleich zehn Millimeter, der Zeitabstand beim CTC-Screening, das Dickdarmkrebsrisiko aufgrund übersehener Polypen und das Komplikationsrisiko (vgl. Tabelle 12: Ergebnisse der Sensitivitätsanalysen).

Tabelle 12: Ergebnisse der Sensitivitätsanalysen

<table>
<thead>
<tr>
<th>Autor(en)</th>
<th>Wichtige Faktoren bei der Sensitivitätsanalyse</th>
</tr>
</thead>
</table>
| Hassan et al. 2007 | • Sensitivität der CTC
 • Compliance beim Erstscreening
 • Untersuchungskosten
 • Zeitabstand des Screenings |
| Vijan et al. 2007 | • Bei 3-D-CTC (5 J.) vs. Koloskopie (10 J.):
 ○ Kosten beider Untersuchungen
 ○ Sensitivität der 3-D-CTC für Polypen ≥ 10 mm
 ○ Compliance mit Erstscreening und Follow-up-Koloskopie (bei Vorliegen von Polypen)
 • Bei 3-D-CTC (10 J.) vs. Koloskopie (10 J.):
 ○ Compliance mit Follow-up-Koloskopie (bei Vorliegen von Polypen) |
| Heitman et al. 2005 | • Testgüte CTC
 • Dickdarmkrebsrisiko aufgrund übersehener Polypen
 • Perforationsrisiko und -mortalität
 • Untersuchungskosten
 • Unterschiedliche Compliance |
| Ladabaum et al. 2005 | – |
| Ladabaum et al. 2004 | • Untersuchungskosten der CTC im Vergleich zur Koloskopie
 • Sensitivität der Folgekoloskopie
 • Compliance |
| Autor(en) | Sensitivitätsanalyse: Ergebnisse zur inkrementellen Kostenwirksamkeit im Vergleich der Verfahren untereinander |
| Hassan et al. 2007 | • Koloskopie vs. CTC:
 ○ Dominant bei Erhöhung der Kosten für CTC von 100,90 Euro auf 148 Euro
 ○ 5.157 Euro bei Verringerung der Sensitivität der CTC für Polypen ≥ 10 mm von 85 % auf 79 %
 • CTC vs. Koloskopie:
 ○ 76.453 Euro wenn CTC-Screening alle 5 J.
 ○ Dominant bei Verringerung der Compliance zur Koloskopie von 65 % auf 60 % |
Fortsetzung Tabelle 12: Ergebnisse der Sensitivitätsanalysen

<table>
<thead>
<tr>
<th>Autor(en)</th>
<th>Sensitivitätsanalyse: Ergebnisse zur inkrementellen Kostenwirksamkeit im Vergleich der Verfahren untereinander</th>
</tr>
</thead>
</table>
| Vijan et al. 2007 | 2-D-CTC gegenüber Koloskopie (10 J.):
 - Kosten effektiv nur unter extremen Annahmen
 - Koloskopie (10 J.) gegenüber 3-D-CTC (5 J.):
 - Dominant bei Reduktion der Sensitivität der 3-D-CTC (für Polypen ≥ 10 mm) von 91 % auf 83 %
 - Dominant bei Erhöhung der Compliance mit Erstscreening von 80 % auf 90 %
 - Dominant bei Reduktion der Compliance mit Follow-up-Koloskopie von 75 % auf 50 %
 - 3-D-CTC (5 J.) gegenüber Koloskopie (10 J.):
 - Unter 50.000 USD bei Reduktion der Kosten CTC von 559 USD auf 400 USD
 - Dominant bei Erhöhung der Compliance mit Erstscreening von 60 % auf 80 %
 - Dominant bei Reduktion der Compliance mit Follow-up-Koloskopie von 75 % auf 95 % |
| Heitman et al. 2005 | CTC gegenüber Koloskopie:
 - 220.000 CAD bei Erhöhung der Sensitivität CTC (für Polypen (≥ 10 mm) von 71 % auf 94 % und Spezifität CTC von 84 % auf 80 % (Werte aus der Literatur)
 - 42.900 CAD bei Senkung des 3-Jahres-Risikos für Dickdarmkrebs aufgrund übersehener Polypen von 0,9 auf 0 % (6 bis 9 mm) bzw. von 1,5 auf 0,5 % (≥ 10 mm)
 - 2.130 CAD bei Erhöhung des Perforationsrisikos bei (diagnostischer) Koloskopie von 0,09 auf 0,2 %
 - 18.200 CAD bei Erhöhung des Risikos eines Todes durch Perforation von 4,9 % auf 14 % (Wert aus der Literatur)
 - 711.000 CAD, wenn die Compliance bei CTC um 50 % besser ist als bei Koloskopie (base case: 0 %)
 - Koloskopie gegenüber CTC:
 - 956.000 CAD, wenn Koloskopie indirekte Kosten von 1,5 Werktagen verursacht, CTC einen Ausfall von 0,5 Werktagen
 - 21.900 CAD, wenn Koloskopie zusätzlich zum vorhergehenden Punkt indirekte Kosten von zwei Werktagen verursacht, CTC einen Ausfall von 0,5
 - 711.000 CAD, wenn die Compliance bei CTC um 50 % besser ist als bei Koloskopie (base case: 0 %) |
| Ladabaum et al. 2005 | CTC Pickhardt1 gegenüber Koloskopie:
 - 133.000 USD, wenn Sensitivität der direkten Follow-up-Koloskopie für alle Polypen 100 %
 - 367.000 USD, wenn Koloskopie die Lebensqualität für zwei Tage halbiert (und CTC nicht)
 - 266.000 USD, wenn Koloskopie zusätzlich zum vorhergehenden Punkt indirekte Kosten von zwei Werktagen verursacht, CTC einen Ausfall von 0,5
 - 100.000 USD bei Compliance zu Koloskopie von 50 % und zu CTC von 56 %
 - Koloskopie gegenüber CTC Pickhardt1:
 - 233.000 USD (0 USD) wenn Kosten CTC um 40 % (24 %) reduziert werden |

1 Basierend auf Pickhard et al. 2003253.
CAD = Canadian Dollar (dt.: Kanadischer Dollar).
CTC = Computertomografie-Koloskopie.
J = Jahre.
2-D = Drei-dimensional.
Quelle: ÖBIG-FP-eigene Darstellung, Hassan et al.108, Vijan et al.359, Ladabaum et al.175, Heitman et al.114, Ladabaum et al.176

Effektivität und Effizienz der CT-Koloskopie im Vergleich zur konventionellen Koloskopie in der Darmkrebsdiagnose und -früherkennung
Untersuchungskosten

Im italienischen Setting (Hassan et al. 108) wird die Koloskopie dominant gegenüber der CTC (d. h., erstere kostet weniger und ist gleichzeitig wirksamer), anstatt wie im Basissszenario ca. 15.000 Euro zusätzlich pro gewonnenes Lebensjahr zu kosten, wenn die CTC gleich teuer ist wie die Koloskopie. Bei Heitmann et al. 114 und Ladabaum et al. 176 ist die Koloskopie bereits im Basissszenario kosten-sparend gegenüber der CTC. Die Kosten für die CTC müssten um 5 % 114 bzw. um knapp 25 % 176 sinken, damit die Koloskopie nicht mehr dominant ist (d. h. dass sie zwar noch immer zu mehr gewonnen- nenen Lebensjahren führt, aber auch mehr kostet). Weitere aussagekräftige Schwellenwerte wurden hier allerdings nicht berechnet. Bei Vijan et al. 359 ist die CTC im Fünfjahresabstand wirksamer als die Koloskopie, kostet im Basissszenario jedoch 156.000 USD pro zusätzlich gewonnenes Lebensjahr. Dieser Wert sinkt unter den häufig als kritisch angesehenen Schwellenwert von 50.000 USD, wenn die Kosten der CTC um rund 20 % gesenkt oder die der Koloskopie um rund 25 % erhöht werden. Bei einer knapp 30-prozentigen Senkung der CTC-Kosten wird die CTC im Fünfjahresabstand sogar zur dominanten Alternative.

Tabelle 13: Vergleich der Untersuchungskosten für CTC und konventionelle Koloskopie in den Modellrechnungen

<table>
<thead>
<tr>
<th>Autor(en)</th>
<th>Bezugs- Jahr</th>
<th>Untersuchungskosten CTC1</th>
<th>Untersuchungskosten Koloskopie1</th>
<th>Untersuchungskosten Koloskopie mit Polypektomie1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hassan et al. 2007</td>
<td>K. A.</td>
<td>100,9 Euro (0–500)</td>
<td>148,2 Euro (0–500)</td>
<td>228,6 Euro (k. A.)</td>
</tr>
<tr>
<td>Vijan et al. 2007</td>
<td>2003</td>
<td>559 USD (100–1.400)</td>
<td>653 USD (150–1.400)</td>
<td>831 USD (250–1.700)</td>
</tr>
<tr>
<td>Ladabaum et al. 2005</td>
<td>2003</td>
<td>820 USD</td>
<td>820 USD</td>
<td>1.200 USD</td>
</tr>
<tr>
<td>Ladabaum et al. 2004</td>
<td>2003</td>
<td>820 USD (410–1.230)</td>
<td>820 USD (630–1.200)</td>
<td>1.200 USD (940–1.800)</td>
</tr>
</tbody>
</table>

Zeitabstand beim CTC-Screening

Das CTC-Screening im Fünfjahresabstand wird nur noch von einer weiteren Studie (Hassan et al. 108) berücksichtigt, und zwar ebenfalls innerhalb der Sensitivitätsanalyse. Eine Erhöhung der Screeningfrequenz bei der CTC von zehn auf fünf Jahre führt zu höherer Wirksamkeit im Vergleich zur Koloskopie bei gleichzeitigen Mehrkosten von 76.453 Euro pro zusätzlich gewonnenes Lebensjahr. Allerdings ist hier auch die Strahlenbelastung durch die CTC zu bedenken, die in keiner der Modellrechnungen explizit berücksichtigt wird.

Compliance

Auch die Modellannahmen zur Compliance sind bereits im Basissszenario bei den einzelnen Studien etwas unterschiedlich. Alle gehen jedoch von einer gleich hohen Compliance zu beiden Screenings tests aus; zwei Studien gehen darüber hinaus davon aus, dass die Compliance zu Folgeuntersuchungen etwas höher ist als die zum Erstscreening (vgl. Tabelle 14: Vergleich der Eingangswerte für die Compliance). Potenziell entscheidend für die Kosteneffektivität sind in der Sensitivitätsanalyse sowohl die Relation zwischen der CTC-Compliance und der Koloskopie-Compliance als auch die Relation zwischen der Compliance zum Erstscreening und der Compliance zum Folgscreening (wobei Zweiteres nur von zwei Studien überhaupt modelliert wird). Die Ergebnisse sind jedoch uneinheitlich. Bei Hassan et al. 108 wird die CTC kostensparend (dominant) gegenüber der Koloskopie, wenn die Compliance zur Koloskopie bei nur 60 % (statt 65 %) liegt; d. h., das CTC-Screening erzielt...
hier im Gegensatz zum Basisszenario mehr gewonnene Lebensjahre als das Koloskopiescreening, da dieses zwar nach wie vor wirksamer ist, jedoch von weniger Patienten frequentiert wird. Solche guten Ergebnisse für die CTC zeigen sich bei den anderen Studien allerdings nicht. Ladabaum et al. errechnen einen Wert von 100.000 USD pro zusätzlich gewonnenes Lebensjahr für die CTC im Vergleich zur Koloskopie, wenn die Compliance zur Koloskopie 50 % und jene zur CTC 56 % beträgt.

Im Basisszenario ist die Koloskopie in dieser Studie dominant gegenüber der CTC. Eine Grenze von 100.000 USD wird bei Screeningprogrammen, wie schon erwähnt, manchmal noch als akzeptabel angesehen. Bei Heitman et al. ergeben sich auch bei einer um 50 % besseren Compliance zur CTC Kosten pro zusätzlich gewonnenes Lebensjahr von über 700.000 CAD. Bei Vijan et al. werden nur Ergebnisse zur Veränderung der Relation zwischen Erstscreening-Compliance und Compliance zur Folgekoloskopie berichtet. Je geringer die Compliance zum Erstscreening (unter Beibehaltung der hohen Compliance zur Folgekoloskopie), desto kosteneffektiver wird die CTC. Kosteneffektiv mit 33.210 USD pro zusätzlich gewonnenes Lebensjahr wird die CTC auch bei einer besonders hohen Compliance zur Folgekoloskopie von 95 % (detaillierte Ergebnisse in Tabelle 12: Ergebnisse der Sensitivitätsanalysen).

<table>
<thead>
<tr>
<th>Autor(en)</th>
<th>Annahmen zur Compliance im Basisszenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hassan et al. 2007</td>
<td>Zum Erstscreeningtest 65 %, zu Folgeuntersuchungen 80 % (Patienten, die einmal nicht compliant sind, bleiben es)</td>
</tr>
<tr>
<td>Vijan et al. 2007</td>
<td>Zum Erstscreeningtest 60 %, zu Folgeuntersuchungen 75 %</td>
</tr>
<tr>
<td>Heitman et al. 2005</td>
<td>100 % bzw. gleiche Compliance für alle Screeningstrategien</td>
</tr>
<tr>
<td>Ladabaum et al. 2005</td>
<td>100 % bzw. gleiche Compliance für alle Screeningstrategien</td>
</tr>
<tr>
<td>Ladabaum et al. 2004</td>
<td>100 % bzw. gleiche Compliance für alle Screeningstrategien</td>
</tr>
</tbody>
</table>

Bei Vorliegen von Polypen in der CTC.

Sensitivität der CTC für Polypen größer gleich zehn Millimeter, Dickdarmkrebsrisiko, Komplikationsrisiko

Monte-Carlo-Simulation

Vijan et al. berichten die Ergebnisse der Monte-Carlo-Simulation zur 3-D-CTC im Fünfjahresabstand, die im Basisszenario gegenüber der konventionellen Koloskopie Mehrkosten von 156.000 Euro pro zusätzlich gewonnenes Lebensjahr verursacht: Die Wahrscheinlichkeit, unter simultaner Einbeziehung der Unsicherheiten in den Parametern, dass das Verfahren nur 100.000 USD pro zusätzlich gewonnenes Lebensjahr kostet, beträgt etwa 38 %, und die Wahrscheinlichkeit, dass der Wert bei 40.000 USD liegt, 14 % (keine Angabe für 50.000 USD).

6.5.4 Limitationen der Modellrechnungen und Zusammenfassung der Ergebnisse

Eine wichtige Rolle für die Erkennungsgüte der CTC spielen der technische Stand des CT-Geräts, die eingesetzte Software bzw. die Art der Visualisierung sowie die Geschultheit der Befunder. Diese Komponenten gehen über entsprechende Annahmen zu Sensitivität und Spezifität in die Modellrechnungen ein. In Tabelle 15 (Vergleich der Eingangswerte für die Compliance) sind die verwendeten Werte einander gegenübergestellt. Trotz des sehr breiten Spektrums an Annahmen zur Erkennungsgüte und teils hohen Bandbreiten in den Sensitivitätsanalysen gibt es in den fünf Modellrechnungen kaum ein Szenario, in dem die Erkennungsgüte die Ergebnisse zur Kosteneffektivität tatsächlich beeinflusst. Lediglich die Erhöhung der Sensitivität für Polypen größer 10 mm von 91 auf 99 % bei
einem CTC-Screening alle fünf Jahre führt zu Kosten von 73.990 USD pro zusätzlich gewonnenes Lebensjahr (im Basisszenario 156.000 USD) und liegt damit unter der Grenze von 100.000 USD.

Tabelle 15: Vergleich der Werte für Sensitivität und Spezifität der CTC bzw. Koloskopie in den Modellrechnungen

<table>
<thead>
<tr>
<th>Autor(en)</th>
<th>Sensitivität CTC in %<sup>1</sup></th>
<th>Sensitivität Koloskopie in %<sup>1</sup></th>
<th>Spezifität CTC in %<sup>1</sup></th>
<th>Spezifität Koloskopie in %<sup>1</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hassan et al. 2007</td>
<td>48 für P. ≤ 5 mm (20–96)</td>
<td>80 für P. ≤ 5 mm (50–96)</td>
<td>86 (50–95)</td>
<td>90 (70–100)</td>
</tr>
<tr>
<td>Vijan et al. 2007</td>
<td>33/46<sup>2</sup> für P. ≤ 5 mm (14–57)/(25–56)<sup>2</sup></td>
<td>80 für P. ≤ 5 mm (50–96)<sup>2</sup></td>
<td>91/91<sup>2</sup> (85–97)/(85–97)<sup>2</sup></td>
<td>90 (70–100)</td>
</tr>
<tr>
<td>Heitman et al. 2005</td>
<td>61 für P. 6–9 mm (30–87)</td>
<td>94 für P. 6–9 mm (88–99)</td>
<td>84 (80–91)</td>
<td>100</td>
</tr>
<tr>
<td>Ladabaum et al. 2005</td>
<td>70/87<sup>2</sup> für P. < 10 mm (55–94)</td>
<td>85 für P. < 10 mm (88–100)</td>
<td>85/80<sup>3</sup></td>
<td>100<sup>5</sup></td>
</tr>
<tr>
<td>Ladabaum et al. 2004</td>
<td>45/70/87<sup>2</sup> für P. < 10 mm (45–87)</td>
<td>85 für P. < 10 mm (88–90)</td>
<td>93/85/80<sup>4</sup> (80–93)</td>
<td>100<sup>5</sup></td>
</tr>
</tbody>
</table>

¹ Werte in Klammern sind die in den Studien angegebenen Bandbreiten für die durchgeführten Sensitivitätsanalysen.
² 2-D-CTC/3-D-CTC (beide nach Mulhall et al.215).
³ Nach Cotton et al.³⁶⁰/nach Pickhardt et al.²⁵³
⁴ Nach Cotton et al.³⁶⁰/”mittlerer” Wert aus verschiedenen Literaturquellen/nach Pickhardt et al.²⁵³.
⁵ K. A., offenbar 100 %.

Quelle: ÖBIG-FP-eigene Darstellung, Hassan et al.108, Vijan et al.359, Ladabaum et al.175, Heitman et al.114, Ladabaum et al.176

Der Zeitabstand des Screenings wird bei der konventionellen Koloskopie mit zehn Jahren empfohlen. Für die CTC gibt es noch keine eindeutigen Screeningempfehlungen. Die Studie von Vijan et al.359, die unter den fünf Studien die umfassendste und qualitativ beste Analyse darstellt, bezieht nicht nur ein CTC-Screening mit ein, das analog dem Koloskopiescreening im Zehnjahresabstand stattfindet, sondern auch die Alternative im Fünfjahresabstand. Für die Koloskopie wird mit der Begründung des in den USA ohnehin bereits bestehenden Mangels an Endoskopikern auf eine Variation des Zeitabstands verzichtet. Hassan et al.108 testen das fünfjährige CTC-Screening in der Sensitivitätsanalyse. Das Fünfjahresscreening mit CTC führt in beiden Modellrechnungen zu mehr gewonnenen Lebensjahren als das Zehnjahresscreening mit Koloskopie, da mehr Polypen früher erkannt werden (wobei hier auch die Annahmen zur Schnelligkeit des Fortschreitens zwischen den Polypenstadien eine Rolle spielen). Die Kosten pro zusätzlich gewonnenes Lebensjahr liegen jedoch bei Vijan et al. wie erwähnt bei über 150.000 USD, bei Hassan et al. betragen sie infolge der deutlich niedrigeren Untersuchungskosten im italienischen Setting etwa 76.500 USD. Nicht erfasst ist in diesen Modellrechnungen
die höhere Strahlenbelastung und ein mögliches, wenn auch geringes Komplikationsrisiko bei der CTC.

Die konsequente Berücksichtigung einer ggf. eingeschränkten Lebensqualität, nicht nur durch die kurzfristige Belastung bei den Untersuchungen, sondern auch infolge von Komplikationen, extra-kolonischen Zusatzzbefunden sowie bei Krebspatienten, fehlt bei allen fünf Studien. Eine Aussage, ob sich die Ergebnisse dadurch verändern würden, kann nicht getroffen werden.

Bemerkenswert ist, dass die Ergebnisse aller fünf Modellrechnungen trotz teils unterschiedlicher Modelle und zugrunde liegender Annahmen letztlich zur selben Schlussfolgerung führen – dass für die CTC aufgrund der Kosteneffektivität keine klare Empfehlung ausgesprochen werden kann. Auch in den Sensitivitätsanalysen zeigen sich nur wenige Szenarien, die einen Anhaltspunkt für eine deutlich andere Aussage bieten.

Die Studien berücksichtigen nur die Screeningsituation (alle Personen ab 50 Jahren mit durchschnittlichem Dickdarmkrebsrisiko). Dies dürfte vor allem daran liegen, dass die Wahrscheinlichkeit einer Kosteneffektivität der CTC abnimmt, je höher das Dickdarmkrebsrisiko bei der untersuchten Person ist – da damit die Wahrscheinlichkeit steigt, dass der Patient ohnehin zur Koloskopie und ggf. zur Polypenabtragung überwiesen werden muss. Ökonomische Untersuchungen, die sich mit der Frage beschäftigen, ob bei Patienten, bei denen die konventionelle Koloskopie nicht indiziert ist bzw. bei denen nur eine inkomplette Koloskopie möglich ist, zur vollständigen Abklärung auf jeden Fall eine CTC durchgeführt werden soll, liegen anhand der für diesen Bericht durchgeführten Literatursuche nicht vor. Die Alternative zur CTC wäre in diesem Fall der Doppelkontrasteinlauf des Dickdarms (vgl. Abschnitt 6.2.1.2, Ätiologie, Pathogenese und Risikofaktoren).

6.5.6.3 Übertragbarkeit der Ergebnisse auf Deutschland

Ökonomische Studien aus Deutschland zur konventionellen Koloskopie

Effektivität und Effizienz der CT-Koloskopie im Vergleich zur konventionellen Koloskopie in der Darmkrebsdiagnose und -früherkennung

nom (3.818 Deutsche Mark für die reine Diagnose). Menges et al.²⁰⁹ vergleichen das Screening in ihrer Zielgruppe (siehe oben mit dem in Deutschland bereits empfohlenen Screening in der Zielgruppe der über 55-Jährigen).

Kosten der CTC

Die Kosten einer CTC-Untersuchung können für Deutschland nur anhand der Gebührenordnung für privatärztliche Leistungen geschätzt werden (vgl. 6.5.8, Juristische Aspekte) und dürften – ähnlich wie in den fünf Modellrechnungen – unter den oben genannten Kosten für die (diagnostische) Koloskopie in Deutschland liegen. In den Modellrechnungen zeigt sich allerdings, dass nur ein deutlicher Unterschied bei den Kosten (zumindest um ca. 25 % geringere Kosten der CTC im Vergleich zur diagnostischen Koloskopie) eventuell dazu führen kann, dass die CTC das kosteneffektivere Verfahren darstellt (vgl. Tabelle 12: Ergebnisse der Sensitivitätsanalysen). Einschränkend zu dieser Aussage ist anzumerken, dass die Untersuchungskosten zwar in allen Studien (bis auf jene ohne Sensitivitätsanalyse) über hohe Bandbreiten variiert werden, die Ergebnisdokumentation der Sensitivitätsanalysen jedoch in den meisten der Studien unzureichend transparent ist.

Bedeutung der Compliance

Die Compliance zum Screening spielt, wie sich aus den Studienergebnissen zeigt, eine wichtige Rolle. Relevant sind sowohl ein Unterschied in der Compliance für CTC und Koloskopie als auch ein Unterschied zwischen Compliance zum Erstscreening und Compliance zur Follow-up-Koloskopie sowie die Compliance zur Follow-up-Koloskopie selbst (vgl. Tabelle 12: Ergebnisse der Sensitivitätsanalysen). In den Studien werden Werte zwischen 60 und 100 % angesetzt. Dies dürfte für Deutschland deutlich zu hoch sein. Die kumulative Teilnehmerate an der Vorsorgekoloskopie lag in den Jahren 2003 bis 2005 bei Frauen bei 10,2 und bei Männern bei 8,8 % (vgl. 6.5.7, Ethische/soziale Aspekte). Eine niedrige Compliance beim Erstscreening und eine vergleichsweise hohe Compliance

DAHTA@DIMDI

Seite 48 von 164
zur Follow-up-Koloskopie könnte jedoch, wie die Ergebnisse aus den Sensitivitätsanalysen zeigen, die Kosteneffektivität zugunsten der CTC beeinflussen. Bei der Compliance zur Follow-up-Koloskopie dürfte in der Praxis die Möglichkeit, diese am selben Tag und damit ohne einen zweiten Vorbereitungsdurchlauf für den Patienten (Darmentleerung etc.) durchzuführen, eine wesentliche Rolle spielen.

6.5.7 Ethische/soziale Aspekte

Von den eingeschlossenen Volltexten beschäftigen sich drei mit Erfahrungen und Präferenzen von Patienten bezüglich CTC und konventioneller Koloskopie32, 99, 355. Eine Handsuche lieferte eine weitere Studie zu diesem Thema283. Weitere fünf Artikel beziehen sich auf ethische und soziale Aspekte der CTC und/oder der konventionellen Koloskopie im Screenengprozess und werden eingeschlossen12, 23, 172, 353, 378. Drei weitere Artikel, die auch für andere Kapitel des vorliegenden Berichts verwendet wurden, behandeln ethische und soziale Aspekte am Rande und werden ebenfalls eingeschlossen15, 27, 211. Außerdem werden relevante Aspekte im Internet recherchiert und textlich dargestellt. In Tabelle 16: Volltexte, die ethische und soziale Aspekte behandeln sind alle Texte aufgelistet.

Tabelle 16: Volltexte, die ethische und soziale Aspekte behandeln

<table>
<thead>
<tr>
<th>Autor(en)</th>
<th>Jahr</th>
<th>Titel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banerjee et al.</td>
<td>2006</td>
<td>CT colonography for colon cancer screening</td>
</tr>
<tr>
<td>Berlin</td>
<td>2003</td>
<td>Medicolegal and ethical issues in radiologic screening</td>
</tr>
<tr>
<td>Birkner</td>
<td>2003</td>
<td>Evidenz-basierte Prävention des kolorektalen Karzinoms</td>
</tr>
<tr>
<td>Bosworth et al.</td>
<td>2006</td>
<td>Prospective comparison of patient experience with colon imaging tests</td>
</tr>
<tr>
<td>Bundesausschuss der Ärzte und Krankenkassen</td>
<td></td>
<td>Richtlinien des Bundesausschusses der Ärzte und Krankenkassen über die Früherkennung von Krebserkrankungen („Krebsfrüherkennungsrichtlinien“)</td>
</tr>
<tr>
<td>Edwards et al.</td>
<td>2004</td>
<td>Colorectal Neoplaisa Screening with CT Colonography in Average-Risk Asymptomatic Subjects: Community-based Study</td>
</tr>
<tr>
<td>Gluecker et al.</td>
<td>2003</td>
<td>Colorectal cancer screening with CT colonography, colonoscopy, and double-contrast barium enema examination: prospective assessment of patient perceptions and preferences</td>
</tr>
<tr>
<td>Juchems et al.</td>
<td>2005</td>
<td>A retrospective Evaluation of Patient Acceptance of Computed Tomography Colonography („Virtual Colonoscopy“) in Comparison with Conventional Colonoscopy in an Average Risk Screening Population</td>
</tr>
<tr>
<td>Krüger-Brand</td>
<td>2004</td>
<td>Der involvierte Patient: Screening ist wie eine Autoinspektion</td>
</tr>
<tr>
<td>Merzenich et al.</td>
<td>2005</td>
<td>Früherkennung kolorektaler Tumoren: Gibt es die optimale Screeningmassnahme?</td>
</tr>
<tr>
<td>Ristvedt et al.</td>
<td>2003</td>
<td>Patient Preferences for CT Colonography, Conventional Colonoscopy, and Bowel Preparation</td>
</tr>
<tr>
<td>Svensson et al.</td>
<td>2002</td>
<td>Patient Acceptance of CT Colonography and Conventional Colonoscopy: Prospective Comparative Study in Patients with or Suspected of Having Colorectal Disease</td>
</tr>
<tr>
<td>Taylor et al.</td>
<td>2003</td>
<td>Acceptance by Patients of Multidetector CT Colonography Compared with Barium Enema Examinations, Flexible Sigmoidoscopy, and Colonoscopy</td>
</tr>
<tr>
<td>Thomeer et al.</td>
<td>2002</td>
<td>Patient acceptance for CT colonography: what is the real issue?</td>
</tr>
<tr>
<td>Ustun und Ceber</td>
<td>2004</td>
<td>Ethical issues for cancer screenings Five countries – Four types of cancer</td>
</tr>
<tr>
<td>Van Gelder et al.</td>
<td>2004</td>
<td>CT colonography and colonoscopy: assessment of patient preference in a 5-week follow-up study</td>
</tr>
<tr>
<td>Yee</td>
<td>2003</td>
<td>Screening CT colonography</td>
</tr>
</tbody>
</table>

BRD = Bundesrepublik Deutschland. CT = Computertomografie. ESGE/UEGF = European Society of Gastrointestinal Endoscopy/United European Gastroenterology Federation.

Quelle: ÖBIG-FP-eigene Darstellung
6.5.7.1 Allgemeine Aspekte

Das KRK ist eine der Krebsarten, bei denen Präventionsmaßnahmen greifen. Obwohl die konventionelle Koloskopie im Gegensatz zur CTC in Deutschland Teil des Krebsfrüherkennungsprogramms ist, nutzt nur ein relativ geringer Anteil der Bevölkerung diese Möglichkeit: Die Untersuchung wird von Patienten als unangenehm, beunruhigend oder schmerzhaft gesehen, wobei die Erwartungen oft pessimistischer sind als die Einschätzung nach erfolgter Untersuchung (siehe 6.5.7.4, Patientenerfahrungen und -präferenzen). Dies gilt sowohl für die konventionelle Koloskopie als auch für die CTC. Bezüglich der Präferenz von Patienten für eine dieser beiden Untersuchungsmethoden kommen verschiedene Studien zu widersprüchlichen Ergebnissen, wobei die Darmvorbereitung durchweg als unangenehmster Teil der Untersuchung angegeben wird.

Zur Verbesserung der Akzeptanz koloskopischer Untersuchungen können Maßnahmen beitragen, die die Darmvorbereitung im bisherigen Sinn nicht mehr notwendig machen (Methode der Stuhleinfärbung bei der CTC), sowie solche, die die Schmerzhaftigkeit der Untersuchungen verringern. Eine detaillierte Aufklärung über Nutzen und Risiken der Untersuchungen durch den behandelnden Arzt in einer vertrauensvollen Atmosphäre kann dazu beitragen, dass die Untersuchungen als weniger peinlich empfunden werden und die Erwartungen insgesamt weniger pessimistisch ausfallen.

Im Folgenden werden einige ethische und soziale Aspekte detaillierter behandelt.

6.5.7.2 Komplikationsrate

Die Komplikationsrate für die diagnostische Koloskopie liegt international zwischen 0,14 % und 0,35 %, kann aber für therapeutische Koloskopien bedeutend höher sein12, 27, 115, 211, 353 (siehe auch 6.2.1.5, Bildgebende Diagnose- und Screeningverfahren). Für die in Deutschland 2005 durchgeführten und dokumentierten Früherkennungskoloskopi en wird die Komplikationsrate mit 0,0027 % angegeben; dabei ist bei Patienten ohne Polypektomie die Rate niedriger (0,0013 %) als bei polypektomierten Patienten (0,0068 %)384. Die Komplikationsrate kann verringert werden, indem Patienten mit signifikanter Komorbidität vom Screening ausgeschlossen werden12.

6.5.7.3 Akzeptanz der konventionellen Koloskopie

Auf Basis der Abrechnungshäufigkeit der präventiven Koloskopie wurde die Teilnahme an der Früherkennungskoloskopie unter Verwendung der Mitgliederstatistik der gesetzlichen Krankenkassen von 2005 geschätzt384. In den Jahren 2003 bis 2005 lag die kumulative Teilnahmerate der Frauen bei 10,2 %, die der Männer bei 8,8 % (bezogen auf die mittlere Berechtigtenzahl der 55- bis 74-Jährigen). In den unteren Altersgruppen (55 bis 64 Jahre) ist die Akzeptanz des Screeningangebots bei Frauen deutlich größer als bei Männern, in den höheren Altersgruppen (≥ 70 Jahre) nehmen mehr Männer als Frauen das präventive Angebot wahr. Die Akzeptanz der Früherkennungskoloskopie ist damit immer noch gering172.

Ein wichtiger Faktor, der die Akzeptanz der konventionellen Koloskopie in der Bevölkerung beeinflusst, ist die Erwartung der Patienten, dass die Untersuchung unangenehm und schmerzhaft ist12, 211, 337. (Gleiches gilt für die CTC76.) Außerdem wird die geringe Akzeptanz von Screeningmaßnahmen auf ein unterschätztes individuelles Erkrankungsrisiko zurückgeführt170, 211.
6.5.7.4 Patientenerfahrungen und -präferenzen

Patientenerfahrungen und -präferenzen bezüglich CTC und konventioneller Koloskopie werden in fünf Studien untersucht146, 283, 337, 348, 355, drei Studien untersuchen die Erfahrungen und Präferenzen von Patienten hinsichtlich CTC, Koloskopie und Doppelkontraströntgen32, 99 bzw. hinsichtlich CTC, Koloskopie, Doppelkontraströntgen und Sigmoidoskopie344. Zwei dieser acht Studien beschäftigen sich zusätzlich mit den Erwartungen von Patienten hinsichtlich dieser Verfahren99, 283.

Die Erwartungen von Patienten bezüglich Schmerzhaftigkeit und Unannehmlichkeit der CTC und Koloskopie sind negativer als die Einschätzung nach der tatsächlichen Untersuchung99, 283. Die Erwartungen von Frauen an CTC und Koloskopie sind negativer als die von Männern; bei der Befragung nach den Untersuchungen kann jedoch kein geschlechtsspezifischer Unterschied festgestellt werden283.

Unabhängig von der Art der Darmvorbereitung wird diese von der Mehrzahl der Patienten als unangenehm und störend empfunden32, 99, 283, 355, manchmal wird die Vorbereitung als der unangenehmste Teil der Untersuchung bezeichnet146, 283, 355, und Patienten geben an, dass sie eher zu weiteren Screeninguntersuchungen bereit wären, wenn die Darmvorbereitung nicht notwendig wäre99.

Bezüglich der Unterschiede in der Präferenz von CTC oder konventioneller Koloskopie ist die Datenlage nicht ganz eindeutig. Allgemein ist festzustellen, dass die Bewertung der Untersuchungen nach Tagen oder Wochen gegenüber der Bewertung direkt nach der Untersuchung oft milder ausfällt bzw. die Präferenz für die eine oder andere Untersuchungsmethode nicht mehr so ausgeprägt ist99, 348, 355.

In manchen Studien wird die Koloskopie von Patienten als bedeutend schmerzhafter und unangenehmer bewertet als die CTC337, 344, 355, in anderen werden beide Untersuchungsmethoden ähnlich bewertet99, 283, 348. Nach ihrer Präferenz für zukünftige Untersuchungen befragt, gibt die Mehrzahl der Patienten, die eine Präferenz haben, die CTC als bevorzugte Untersuchungsmethode an99, 146, 283, 337, 344, 348, 355. Dies trifft auch dann zu, wenn die beiden Untersuchungsmethoden als ähnlich unangenehm empfunden wurden99, 283, 348 bzw. auch wenn die Patienten insgesamt mit der Koloskopie zufriedener waren als mit der CTC344.

Zu den Gründen für ihre Präferenz befragt, geben die Patienten an, dass die CTC schneller, einfacher und weniger invasiv sowie keine Sedierung nötig sei283, 348, für Koloskopie spreche, dass nur eine Untersuchung nötig sei und man wegen der Sedierung von der Untersuchung nichts mitbekommen würde283. Letzteres wird von manchen Patienten als Vorteil, von manchen als Nachteil gesehen337. Als zusätzliche Vorteile der Koloskopie werden von Patienten angegeben, dass man den Untersuchungs- verlauf am Bildschirm direkt mitverfolgen kann337, 344, die Ergebnisse sofort erfährt und die Möglichkeit einer sofortigen Biopsie oder Polypenentfernung besteht337.

Das Ausmaß an empfundenen Schmerzen beeinflusst ganz klar die Präferenz für eine Untersuchungsmethode32, 337, 355. Eine für den Patienten als schmerzhaft und peinlich empfundene CTC kann mit einer Präferenz für Koloskopie assoziiert werden und umgekehrt355. Wenn die Schmerzhaftigkeit der Untersuchungen verringert werden kann, könnten dies zu einer erhöhten Akzeptanz der Untersuchungen führen.

Hinsichtlich der Präferenz von Patienten für CTC oder konventionelle Koloskopie erwähnt Yee378 neben Svenssson et al.337 und Thomeer et al.348 auch die Studie von Akerkar et al. (2001; zitiert nach Yee378), in der 295 Patienten evaluiert werden: Direkt nach der Untersuchung stuften Patienten die CTC als schmerzerhaft und unangenehmer ein als die Koloskopie, 24 Stunden später bevorzugt eine Mehrzahl der Patienten die CTC.

Unterschiede in den Studiendesigns sind mögliche Gründe für die unterschiedlichen Ergebnisse bezüglich der Präferenz einer der beiden Untersuchungsmethoden vonseiten der Patienten: Welche Untersuchungsarten bewertet werden, welcher Risikogruppe die Patienten angehören, die Art der Sedierung und der Insufflation, die Verwendung von Medikamenten, die Spasmen während der Untersuchung reduzieren, die Fragestellung in den Fragebögen, wer die Fragebögen wann an die Patienten ausgibt und ob bei der Untersuchung Polypen gefunden werden, das sind u. a. mögliche, die Präferenz der Patienten beeinflussende Faktoren.
6.5.8 Juristische Aspekte

Im Rahmen der Zweitselektion konnte ein juristischer Text identifiziert werden, der sich mit Änderungen des Einheitlichen Bewertungsmaßstabs (EBM) betreffend konventionelle Koloskopie befasst. Eine Handsuche lieferte drei Volltexte, die sich mit Richtlinien für die CTC beschäftigen. Darüber hinaus werden relevante Aspekte in Gesetzestexten und Richtlinien recherchiert und textlich dargestellt. In Tabelle 17: Volltexte, die juristische Aspekte behandeln) sind alle Texte aufgelistet.

Tabelle 17: Volltexte, die juristische Aspekte behandeln

<table>
<thead>
<tr>
<th>Autor(en)</th>
<th>Jahr</th>
<th>Titel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bundesärztekammer</td>
<td>1992</td>
<td>Leitlinien der Bundesärztekammer zur Qualitätssicherung in der Computertomographie</td>
</tr>
<tr>
<td>Kassenärztliche Bundesvereinigung</td>
<td>2006</td>
<td>Neufassung der „Vereinbarung gemäß § 135 Abs. 2 SGB V zur Ausführung und Abrechnung von koloskopischen Leistungen“. Voraussetzungen gemäß § 135 Abs. 2 SGB V zur Ausführung von koloskopischen Leistungen (Qualitätssicherungsvereinbarung zur Koloskopie)</td>
</tr>
<tr>
<td>N. N.</td>
<td>2003</td>
<td>Mitteilungen: Beschlussfassung des Bewertungsausschusses</td>
</tr>
<tr>
<td>N. N.</td>
<td></td>
<td>High-Tech-Einsatz verbessert virtuelle Koloskopie</td>
</tr>
<tr>
<td>N. N.</td>
<td></td>
<td>Voraussetzungen gemäß § 135 Abs. 2 SGB V zur Ausführung und Abrechnung von koloskopischen Leistungen (Qualitätssicherungsvereinbarung zur Koloskopie)</td>
</tr>
<tr>
<td>N. N.</td>
<td></td>
<td>Verordnung über den Schutz vor Schäden durch Röntgenstrahlen (Röntgenverordnung – RöV)</td>
</tr>
<tr>
<td>Rockey et al.</td>
<td>2007</td>
<td>CT Colonography Standards. Standards for Gastroenterologists for Performing and Interpreting Diagnostic Computed Tomographic Colonography</td>
</tr>
<tr>
<td>Taylor et al.</td>
<td>2007</td>
<td>European Society of Gastrointestinal and Abdominal radiology: Consensus statement on CT colonography</td>
</tr>
</tbody>
</table>

Abs. = Absatz. BRD = Bundesrepublik Deutschland. CT = Computertomografie. N. N. = No name. RöV = Röntgenverordnung. SGB V = Sozialgesetzbuch, Fünftes Buch (V). Quelle: ÖBIG-FP-eigene Darstellung

Effektivität und Effizienz der CT-Koloskopie im Vergleich zur konventionellen Koloskopie in der Darmkrebsdiagnose und -früherkennung

Die Patientenaufklärung zur Koloskopie muss mindestens 24 Stunden vor dem Eingriff stattfinden, dabei sind die Patienten auch darüber aufzuklären, dass, wenn medizinisch indiziert, Polypen noch während der screeningkoloskopischen Untersuchung entfernt werden. Die ärztliche Nachbeobachtung und Nachsorge der Patienten ist sicherzustellen. Die Dokumentation der Früherkennungskoloskopie inklusive einer Bilddokumentation über die Vollständigkeit der Durchführung hat ab 01.01.2007 in elektronischer Form zu erfolgen.

Die Kosten für die CTC werden von den Krankenkassen derzeit nicht übernommen (auch nicht für Patienten, bei denen eine Koloskopie nicht möglich ist). Laut Gebührenordnung für privatärztliche Leistungen wird die computergesteuerte Tomografie im Abdominalbereich mit 2.600 Punkten berechnet.

Um die Qualitätssicherung bei der CTC zu gewährleisten, wurde vorgeschlagen, Richtlinien zu entwickeln, die sich an den nachzuweisenden Qualifikationen von Gastroenterologen orientieren. Die European Society of Gastrointestinal and Abdominal Radiology schlägt in ihrem Konsensusschreiben vor, dass ein erfolgreiches Training für CTC die Interpretation von mindestens 50 Fällen beinhalten und mit einer Prüfung abgeschlossen werden sollte. Die Amerikanische Gastroenterologische Vereinigung (AGA) schlägt eine noch umfassendere Ausbildung für CTC vor: Nach Interpretation von mindestens 75 Fällen sollen Gastroenterologen über vier bis sechs Wochen mit einem Mentor zwischen 25 und 50 zusätzliche Fälle begutachten; eine regelmäßige Fortbildung nach dieser Grundausbildung wird erwartet.

6.6 Diskussion

Effektivität und Effizienz der CT-Koloskopie im Vergleich zur konventionellen Koloskopie in der Darmkrebsdiagnose und -früherkennung

Schluss, dass die CTC zur Detektion großer Polypen (mit zumindest 10 mm Durchmesser) aufgrund hoher Sensitivitäts- und Spezifitätswerte prinzipiell geeignet sei\(^{104, 330}\). In anderen Arbeiten wird der generelle Einsatz der CTC in der allgemeinen diagnostischen Praxis wegen der starken Heterogenität der bisherigen Ergebnisse als noch zu früh angesehen\(^{215}\).

Zum Einsatz der CTC als Screeningmethode liegen aus medizinischer Sicht deutlich weniger Daten aus großen klinischen Studien vor als für die Diagnostik. Lediglich eine Multicenterstudie an gesunden Personen mit durchschnittlichem Risiko ist in dem vorliegenden Suchzeitraum enthalten, diese zeigt gute Ergebnisse\(^{253}\), eine große Einzelzentrumstudie an Personen mit etwas überdurchschnittlichem Risiko dagegen zeigt deutlich schlechtere\(^{144}\). Für die Beurteilung als Screeningtest sind primär die patientenbezogenen Sensitivitätswerte relevant. Dabei ist aber zu beachten, dass bei Untersuchung von Patienten mit erhöhtem Risiko für das Auftreten von Läsionen die Wahrscheinlichkeit für das Bestehen von mehreren Läsionen höher ist und somit auch die patientenbezogene Sensitivität in der Regel höher sein sollte als bei Screeningpatienten mit durchschnittlichem Risiko.

Mulhall et al.\(^{215}\) fordern eine weitere Abklärung der Ursachen für die Heterogenität der Sensitivität in den bisherigen Studien bzw. konsistentere Daten, bevor die CTC als Screeningmethode zur Detektion von KRK generell empfohlen werden kann. Die Blue Cross and Blue Shield Association führt im Jahr 2004 als Argument gegen die CTC als Screeningmethode in der Praxis an, dass erst Standards zur Durchführung der CTC entwickelt werden müssen. Dies ist nunmehr geschehen: Die European Society of Gastrointestinal and Abdominal Radiology behandelt in einem Konsensuspapier unter anderem Darmvorbereitung, Stuhlmarkierung, Kolondistension, Kontrastmittelgabe sowie technische Aspekte, Auswertungsmodalitäten inklusive computergestützte Diagnose und Ausbildung (vgl. auch 6.5.8, Juristische Aspekte)\(^{345}\). Auch die AGA hat Standards für die Diagnostik der CTC formuliert\(^{285}\).

Hinsichtlich der Kosteneffektivität eines CTC-Screenings im Vergleich zum Koloskopiescreening liegen international verschiedene Ergebnisse aus mehreren Modellrechnungen vor, aufgrund derer das CTC-Screening zwar als kosteneffektiv zur Option „kein Screening“, jedoch – unter den meisten Annahmen – nicht als kosteneffektiv im Vergleich zum Screening mit konventioneller Koloskopie bezeichnet werden kann. Dieses Ergebnis lässt sich aufgrund der unterschiedlichen Gesundheitssysteme und Kostenstrukturen nicht ohne weiteres auf Deutschland übertragen. Eine wichtige Rolle spielen die Höhe der Untersuchungskosten und die Compliance der Patienten. Dabei geht es nicht nur um die Frage, ob die Compliance zur CTC möglicherweise besser ist als die zur konventionellen Koloskopie. Auch wenn z. B. die generelle Screeningcompliance gering ist (wofür die bisherigen Zahlen in Deutschland sprechen), die Compliance zu einer Folgekoloskopie bei Vorliegen von
Polypen im CTC-Befund jedoch hoch ist, könnte das die Kosteneffektivität eines CTC-Screenings verbessern. Die Compliance zur Folgekoloskopie dürfte auch davon beeinflusst werden, ob sie am selben Tag wie die CTC stattfindet und damit den Patienten eine nochmalige Untersuchungs- vorbereitung erspart. Für eine hohe Compliance zur Koloskopie mit dem Ziel einer Polypektomie würde auch sprechen, dass die Notwendigkeit der Untersuchung von Patienten mutmaßlich anders gesehen wird als bei einer Screeningsuntersuchung.

Während bei der konventionellen Koloskopie Empfehlungen zu Häufigkeit und Untersuchungsintervall beim Screening vorliegen307, gibt es bisher keine vergleichbaren etablierten Empfehlungen für die CTC. Die Frage der Zeitaltände beim CTC-Screening ist auch aus ökonomischer Sicht unklar. Vijan et al.359 vergleichen systematisch nicht nur 2-D- und 3-D-CTC, sondern auch beide Varianten jeweils mit Zahn- und mit Fünfjahresabstand beim Screening. Hiervon hat die 3-D-CTC im Fünfjahresabstand die höchste Kosteneffektivität. Unberücksichtigt bleibt aber die erhöhte Strahlenbelastung (vgl. auch weiter unten).

Auch die Vorgangsweise beim Auffinden von Polypen in der CTC ist nicht einheitlich geregelt187, 228. Relevante Parameter sind Polypengröße und Anzahl von Polypen. Diese Aspekte werden in der Übersichtsarbei von Banerjee und Van Dam15 diskutiert. Da ca. 1 % aller Polypen mit einer Größe von mehr als 10 mm im Verlauf eines Jahres in ein KRK entarten können, wird von den Autoren eine Zuweisung zur konventionellen Koloskopie inklusive Polypektomie in diesem Fall für unumgänglich gehalten. Auch bei Polypen mit einer Größe von 6 bis 9 mm wird eine Koloskopie befürwortet, sofern mehr als drei Polypen vorliegen. Kontrovers wird die Patientengruppe mit ein bis zwei Polypen unter 5 mm eingestuft (die Häufigkeit solcher Polypen wird bei Personen über 50 Jahren in Screeninguntersuchungen mit bis zu 45 % angegeben). In diesen Punkten entsprechen die Vorschläge von Banerjee und Van Dam15 den von der AGA aktuell publizierten CTC-Standards285, wobei diese ergänzen, dass in Anbetracht der fehlenden Daten Kontrolluntersuchungen je nach individuellen Patientencharakteristika festgelegt werden sollten. Dagegen besagt der Konsensus der European Society of Gastrointestinal and Abdominal Radiology, dass Polypen unter 4 mm vernachlässigt werden können345.

In den ökonomischen Modellrechnungen wird grobsteils davon ausgegangen, dass alle bei der CTC gefundenen Polypen unabhängig von ihrer Ausprägung zu einer Koloskopie führen. Diese Annahme wird nicht variiert, es kann deswegen nicht sicher gesagt werden, ob eine Einschränkung auf Polypen bestimmter Größe die Kosteneffektivität der CTC gravierend positiv beeinflusst. Die einzige Analyse (Heitmann et al.114), die annimmt, dass nur Patienten mit Polypen > 5 mm weiter überwiesen werden, zeigt jedoch keine abweichenden Ergebnisse hinsichtlich der Kosteneffektivität. Die Prävalenz für Polypen > 5 mm wird bei Heitmann et al.114 dabei mit 16 % (mittlere Polypen) bzw. 8 % (große Polypen) angenommen. Darüber hinaus müsste berücksichtigt werden, dass bei Patienten mit nicht entfernten Polypen nach Ansicht mancher Autoren288 weitere CTC-Kontrolluntersuchungen in kürzeren Intervallen stattfinden sollten. Diese Vorgangsweise erfordert jedoch nicht nur eine hohe Compliance der betroffenen Patienten, sondern führt auch wieder zu einer zusätzlichen Strahlenbelastung. Darüber hinaus fehlen derzeit Daten zur Entwicklung dieser kleinen Polypen.

Die in diesem Bericht gestellten Forschungsfragen können aufgrund der durchgeführten Literatursuche und -synthese zusammengefasst wie folgt beantwortet werden:

Ein wichtiger ethischer Aspekt ist die Berücksichtigung der Patientenpräferenzen hinsichtlich der Untersuchungen, da es sich insbesondere im Screeningkontext in beiden Fällen um verhältnismäßig aufwändige und als unangenehm empfundene Verfahren handelt. Wichtig erscheint des Weiteren bei beiden Verfahren eine ausreichende Patientenaufklärung hinsichtlich des Nutzens wie auch der Risiken (Komplikationen, Strahlenbelastung etc.).

Als sozialer Aspekt ist zu berücksichtigen, dass Patienten derzeit auch in der Diagnosesituation bei bestehender medizinischer Indikation (siehe oben) die CTC in Deutschland nur als Privatleistung in Anspruch nehmen können.

Juristische Aspekte betreffen neben der Patienteninformation und -aufklärung insbesondere auch die Vorschriftung und Einhaltung von Qualitätsstandards.

6.7 Schlussfolgerung/Empfehlung

Eine klare Empfehlung für die CTC als alternatives Verfahren zu der – bisher weitgehend als Goldstandard akzeptierten – konventionellen Koloskopie kann derzeit weder für die Diagnose- noch für die Screeningsituation gegeben werden. In der Diagnostik ist darüber hinaus die im Vergleich zur Koloskopie fehlende (erweitert diagnostische und) therapeutische Option zu berücksichtigen. Diese Schlussfolgerung gilt aufgrund der vorliegenden Literatur sowohl für die medizinische als auch für die ökonomische Bewertung. Sie ist jedoch trotz der zahlreichen Studien und Analysen zu diesem Thema mit einigen Unsicherheiten behaftet.

Für eine Empfehlung der CTC zum Screening wäre darüber hinaus die Festlegung eines geeigneten Screeningintervalls (unter Berücksichtigung der Strahlenbelastung) und eine evidenzbasierte Regelung der Vorgehensweise beim Auffinden von Polypen in der CTC (Überweisung zur Koloskopie oder nur weitere Beobachtung) begrüßenswert.

Bei Patienten, bei denen eine vollständige konventionelle Koloskopie nicht möglich ist bzw. bei denen das Risiko bzw. der Aufwand für die Endoskopie oder die Sedierung deutlich erhöht sind, ist die Durchführung einer CTC jedenfalls als indiziert zu sehen. Befunde aus der CTC können auch wertvolle zusätzliche Informationen zur präoperativen Abklärung liefern.

Für zukünftige Studien zum Vergleich der CTC mit der konventionellen Koloskopie sind zu Diagnostik und Screening ausreichend große Patienten- bzw. Teilnehmerzahlen anzustreben. Prinzipiell ist eine vollständige Datenpräsentation im Bericht wichtig (z. B. technische Aspekte, Software, Auswertungsmodalität, aber auch Angaben zu Anzahl, Ausbildung und Erfahrung der Befunder bei beiden Methoden, Rückzugzeit bei der konventionellen Koloskopie), um die Studienergebnisse transparent und vergleichbar zu machen. Gerade zur Frage der Bedeutung flacher bzw. eingesunkener Läsionen besteht noch erheblicher Forschungsbedarf, wobei zu berücksichtigen ist, dass es auch bei der Koloskopie technische Weiterentwicklungen wie die Chromoendoskopie oder die hochauflösende Endoskopie gibt. (Magnetresonanztomografie, Kolonkapsel und andere neuere Methoden sind nicht Gegenstand des vorliegenden Berichts, könnten aber in Zukunft an Bedeutung gewinnen und sollten ebenfalls nach den oben erwähnten Kriterien evaluiert werden.)

Die Compliance bzw. die Patientenpräferenzen sind auch aus ethischer Sicht ein wichtiger Faktor, da besonders die Compliance zum Dickdarmkrebscreening mit der konventionellen Koloskopie in Deutschland sehr gering ist. Ergebnisse zu Unterschieden in der Compliance bei der konventionellen Koloskopie und bei der CTC liegen für Deutschland aber offenbar nicht vor, und auch die internationale Literatur zeigt diesbezüglich unklare bzw. uneinheitliche Ergebnisse. Die für beide Untersuchungen derzeit notwendige Darmvorbereitung und die Schmerzhaftigkeit der Untersuchungen zeigen sich jedoch in der Literatur als klar beeinflussende Faktoren.
7 Literaturverzeichnis

Effektivität und Effizienz der CT-Koloskopie im Vergleich zur konventionellen Koloskopie in der Darmkrebsdiagnose und -früherkennung

Effektivität und Effizienz der CT-Koloskopie im Vergleich zur konventionellen Koloskopie in der Darmkrebsdiagnose und -früherkennung

197. Macari M, Bini EJ. CT colonography: Where have we been and where are we going? Radiology 2006; 238(1): 819-833.

217. N. N. Verordnung über den Schutz vor Schäden durch Röntgenstrahlen (Röntgenverordnung - RöV).

221. N. N. Computed tomographic colonography for detection of colorectal polyps and neoplasms (Structured abstract). Institute for Clinical Systems Improvement (ICSI) 2004.

223. N. N. CT colonography (‘virtual colonoscopy’) for colon cancer screening (Structured abstract). Blue Cross Blue Shield Association (BCBS) 2004; 17.

224. N. N. CT Colonography (Virtual Colonoscopy) - (Bericht nur in schwedischer Sprache).

225. N. N. High-Tech-Einsatz verbessert virtuelle Koloskopie.
www.aerztezeitung.de (30.10.2007).

228. N. N. Health Care Guideline: Colorectal Cancer Screening. Institute for Clinical Systems Improvement (ICSI) 2006; 1-23.

Effektivität und Effizienz der CT-Koloskopie im Vergleich zur konventionellen Koloskopie in der Darmkrebsdiagnose und -früherkennung

270. Raum E, Perleth M. Methoden der Metaanalyse von diagnostischen Genauigkeitsstudien.

277. Rex DK. PRO: Patients with polyps smaller than 1 cm on computed tomographic colonography should be offered colonoscopy and polypectomy. The American Journal of Gastroenterology 2005; 100(9): 1903-1905.

Effektivität und Effizienz der CT-Koloskopie im Vergleich zur konventionellen Koloskopie in der Darmkrebsdiagnose und -früherkennung

Effektivität und Effizienz der CT-Koloskopie im Vergleich zur konventionellen Koloskopie in der Darmkrebsdiagnose und -früherkennung

316. Sieg A, Theilmieier A. Ergebnisse der Vorsorge-Koloskopie 2005--Internet-basierte Dokumentation

Effektivität und Effizienz der CT-Kolonoskopie im Vergleich zur konventionellen Koloskopie in der Darmkrebsdiagnose und -früherkennung

8 Anhang

8.1 Schlagworte

Zur Bildung der Schlagwortgruppen siehe Abschnitt 6.4 (Methodik) und 8.3 (Suchstrategie)

8.2 Datenbanken

Zur den Datenbanken siehe Abschnitt 8.3 (Suchstrategie).

8.3 Suchstrategie

Die Datenbankabfrage erfolgte am 05.02.2007. In Tabelle 18 (Suchstrategie in den Literaturdatenbanken) findet sich die Suchstrategie für die 27 Datenbanken.

Tabelle 18: Suchstrategie in den Literaturdatenbanken

<table>
<thead>
<tr>
<th>Nr</th>
<th>Hits</th>
<th>Suchformulierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>C=</td>
<td>33154035</td>
<td>INAHTA; DAHTA; NHSEED; CDAR94; CDSR93; ME00; EM00; CB85; BA00; MK77; CCTR93; GA03; SM78; CV72; II98; ED93; AZ72; AR96; EA08; IS00; CC00; IN00; KR03; KL97; SP97; SPPP; TV01</td>
</tr>
<tr>
<td>S=</td>
<td>17424</td>
<td>COLORECTAL CARCINOMA</td>
</tr>
<tr>
<td>2</td>
<td>6407</td>
<td>COLORECTAL TUM OR#</td>
</tr>
<tr>
<td>4</td>
<td>450</td>
<td>KOLOREKTales Kar#INOM#</td>
</tr>
<tr>
<td>5</td>
<td>16688</td>
<td>KOLOREKTAL## TUMOR?</td>
</tr>
<tr>
<td>6</td>
<td>187</td>
<td>KRK</td>
</tr>
<tr>
<td>7</td>
<td>37166</td>
<td>2 TO 6</td>
</tr>
<tr>
<td>8</td>
<td>23331</td>
<td>(ADENOMA? AND (COLON? OR COLORECTAL?))</td>
</tr>
<tr>
<td>9</td>
<td>4462</td>
<td>(ADENOM? AND (DARM? OR KOLON? OR KOLOREKTAL?))</td>
</tr>
<tr>
<td>10</td>
<td>23762</td>
<td>8 OR 9</td>
</tr>
<tr>
<td>11</td>
<td>12369</td>
<td>(POLYPS AND (COLON? OR COLORECTAL?))</td>
</tr>
<tr>
<td>12</td>
<td>2395</td>
<td>(POLYPS, ADENOMATOUS AND (COLON? OR COLORECTAL?))</td>
</tr>
<tr>
<td>13</td>
<td>3216</td>
<td>POLYPS, COLONIC</td>
</tr>
<tr>
<td>14</td>
<td>528</td>
<td>(POLYPEN AND (DARM? OR KOLON? OR KOLOREKTAL?))</td>
</tr>
<tr>
<td>15</td>
<td>544</td>
<td>DARMPOLYPEN</td>
</tr>
<tr>
<td>16</td>
<td>1481</td>
<td>KOLONPOLYPEN</td>
</tr>
<tr>
<td>17</td>
<td>12810</td>
<td>11 TO 16</td>
</tr>
<tr>
<td>18</td>
<td>60979</td>
<td>7 OR 10 OR 17</td>
</tr>
<tr>
<td>19</td>
<td>28379</td>
<td>COLONOSCOPY</td>
</tr>
<tr>
<td>20</td>
<td>1888</td>
<td>COLONOGRAPHY, CT</td>
</tr>
<tr>
<td>21</td>
<td>348</td>
<td>COLONOSCOPES</td>
</tr>
<tr>
<td>22</td>
<td>308</td>
<td>COLOSCOPIE</td>
</tr>
<tr>
<td>23</td>
<td>5022</td>
<td>KOLOSKOPIE</td>
</tr>
<tr>
<td>26</td>
<td>1753</td>
<td>COLONOGRAPHY, COMPUTED TOMOGRAPHIC</td>
</tr>
<tr>
<td>Nr</td>
<td>Hits</td>
<td>Suchformulierung</td>
</tr>
<tr>
<td>----</td>
<td>------</td>
<td>-----------------</td>
</tr>
<tr>
<td>27</td>
<td>1199</td>
<td>COMPUTED TOMOGRAPHIC COLONOGRAPHY</td>
</tr>
<tr>
<td>28</td>
<td>583</td>
<td>KOLONOGRAPHIE, COMPUTER-TOMOGRAPHISCHE</td>
</tr>
<tr>
<td>29</td>
<td>68</td>
<td>VIRTUELLE KOLOSKOPIE?</td>
</tr>
<tr>
<td>30</td>
<td>3271</td>
<td>COLONOGRAPHY</td>
</tr>
<tr>
<td>31</td>
<td>175</td>
<td>COLOGRAPHY</td>
</tr>
<tr>
<td>32</td>
<td>43</td>
<td>DARMSPIEGELUNG?</td>
</tr>
<tr>
<td>33</td>
<td>30259</td>
<td>19 TO 32</td>
</tr>
<tr>
<td>42</td>
<td>30401</td>
<td>MASS SCREENING</td>
</tr>
<tr>
<td>43</td>
<td>31472</td>
<td>CANCER SCREENING</td>
</tr>
<tr>
<td>44</td>
<td>501820</td>
<td>SCREENING</td>
</tr>
<tr>
<td>45</td>
<td>24367</td>
<td>REIHENUNTERSUCHUNG</td>
</tr>
<tr>
<td>46</td>
<td>62</td>
<td>ANONYME TESTVERFAHREN</td>
</tr>
<tr>
<td>47</td>
<td>88</td>
<td>MEHRPHASENSCREENING</td>
</tr>
<tr>
<td>48</td>
<td>504001</td>
<td>42 TO 47</td>
</tr>
<tr>
<td>55</td>
<td>4002</td>
<td>FR##HERKENNUNG</td>
</tr>
<tr>
<td>56</td>
<td>4002</td>
<td>55</td>
</tr>
<tr>
<td>57</td>
<td>3239911</td>
<td>(CT=DIAGNOS? OR CTG=DIAGNOS?) OR IDENTIFI? OR (CT D SENSITIVITY AND SPECIFICITY)</td>
</tr>
<tr>
<td>58</td>
<td>245075</td>
<td>CT=DETECTION? OR ((SENSITIVITAET AND SPEZIFITAT) OR (SENSITIVITÄT AND SPEZIFITÄT))</td>
</tr>
<tr>
<td>59</td>
<td>3340485</td>
<td>57 OR 58</td>
</tr>
<tr>
<td>60</td>
<td>3678093</td>
<td>48 OR 56 OR 59</td>
</tr>
<tr>
<td>61</td>
<td>5914</td>
<td>18 AND 33 AND 60</td>
</tr>
<tr>
<td>62</td>
<td>5914</td>
<td>61</td>
</tr>
<tr>
<td>63</td>
<td>16</td>
<td>62 AND TECHNOLOGY ASSESSMENT, BIOMEDICAL</td>
</tr>
<tr>
<td>64</td>
<td>5</td>
<td>62 AND BIOMEDICAL TECHNOLOGY ASSESSMENT</td>
</tr>
<tr>
<td>65</td>
<td>1</td>
<td>62 AND (EVALUATION STUDIES AND TECHNOLOGY)</td>
</tr>
<tr>
<td>66</td>
<td>0</td>
<td>62 AND HEALTH CARE, TECHNOLOGY ASSESS?</td>
</tr>
<tr>
<td>67</td>
<td>6</td>
<td>62 AND HEALTH TECHNOLOGY ASSESS?</td>
</tr>
<tr>
<td>68</td>
<td>0</td>
<td>62 AND HEALTH CARE TECHNOLOGY EVALUAT?</td>
</tr>
<tr>
<td>69</td>
<td>0</td>
<td>62 AND HEALTH TECHNOLOGY EVALUAT?</td>
</tr>
<tr>
<td>70</td>
<td>16</td>
<td>62 AND BIOMEDICAL, TECHNOLOGY ASSESS?</td>
</tr>
<tr>
<td>71</td>
<td>2</td>
<td>62 AND HTA</td>
</tr>
<tr>
<td>72</td>
<td>0</td>
<td>62 AND MEDICAL, TECHNOLOGY ASSESS?</td>
</tr>
</tbody>
</table>
Effektivität und Effizienz der CT-Koloskopie im Vergleich zur konventionellen Koloskopie in der Darmkrebsdiagnose und -früherkennung

<table>
<thead>
<tr>
<th>Nr</th>
<th>Hits</th>
<th>Suchformulierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>73</td>
<td>16</td>
<td>62 AND TECHNOLOGY, ASSESS?, BIOMEDICAL?</td>
</tr>
<tr>
<td>74</td>
<td>0</td>
<td>62 AND TECHNOLOGY?, BEWERT?</td>
</tr>
<tr>
<td>75</td>
<td>0</td>
<td>62 AND TECHNOLOGY?, BEURTEIL?</td>
</tr>
<tr>
<td>76</td>
<td>2</td>
<td>62 AND EVALUATION #, MEDICAL?</td>
</tr>
<tr>
<td>77</td>
<td>9</td>
<td>62 AND EVALUATION #, BIOMEDICAL?</td>
</tr>
<tr>
<td>78</td>
<td>0</td>
<td>62 AND EVALUATION #, HEALTH CARE</td>
</tr>
<tr>
<td>79</td>
<td>27</td>
<td>63 TO 78</td>
</tr>
<tr>
<td>80</td>
<td>5914</td>
<td>S=62</td>
</tr>
<tr>
<td>81</td>
<td>43</td>
<td>80 AND REVIEW ARTICLE?</td>
</tr>
<tr>
<td>82</td>
<td>34</td>
<td>80 AND REVIEW-ARTICLE</td>
</tr>
<tr>
<td>83</td>
<td>2</td>
<td>80 AND REVIEW LITERATURE</td>
</tr>
<tr>
<td>84</td>
<td>2</td>
<td>80 AND REVIEW LITERATURE?</td>
</tr>
<tr>
<td>85</td>
<td>97</td>
<td>80 AND SYSTEMATIC REVIEW?</td>
</tr>
<tr>
<td>86</td>
<td>0</td>
<td>80 AND UEBERSICHTSARBEIT</td>
</tr>
<tr>
<td>87</td>
<td>1442</td>
<td>80 AND REVIEW?</td>
</tr>
<tr>
<td>88</td>
<td>79</td>
<td>80 AND REVIEW?, LITERATUR?</td>
</tr>
<tr>
<td>89</td>
<td>102</td>
<td>80 AND REVIEW?, SYSTEMATIC?</td>
</tr>
<tr>
<td>90</td>
<td>0</td>
<td>80 AND REVIEW?, ACADEMIC?</td>
</tr>
<tr>
<td>91</td>
<td>0</td>
<td>80 AND #UBERSICHTSARBEIT</td>
</tr>
<tr>
<td>92</td>
<td>1442</td>
<td>81 TO 91</td>
</tr>
<tr>
<td>93</td>
<td>78</td>
<td>80 AND META-ANALYSIS</td>
</tr>
<tr>
<td>94</td>
<td>12</td>
<td>80 AND META#ANALYSIS</td>
</tr>
<tr>
<td>95</td>
<td>96</td>
<td>80 AND (METAANALY? OR META ANALY? OR META#ANALY?)</td>
</tr>
<tr>
<td>96</td>
<td>96</td>
<td>93 TO 95</td>
</tr>
<tr>
<td>97</td>
<td>1475</td>
<td>92 OR 96</td>
</tr>
<tr>
<td>98</td>
<td>5914</td>
<td>S=62</td>
</tr>
<tr>
<td>99</td>
<td>250</td>
<td>98 AND RANDOMIZED CONTROLLED TRIAL</td>
</tr>
<tr>
<td>100</td>
<td>20</td>
<td>98 AND RCT</td>
</tr>
<tr>
<td>101</td>
<td>304</td>
<td>98 AND RANDOMIZED CONTROLLED TRIAL?</td>
</tr>
<tr>
<td>102</td>
<td>12</td>
<td>98 AND RANDOM ALLOCATION</td>
</tr>
<tr>
<td>103</td>
<td>2</td>
<td>98 AND SINGLE BLIND PROCEDURE?</td>
</tr>
<tr>
<td>104</td>
<td>0</td>
<td>98 AND SINGLE#BLIND METHOD</td>
</tr>
<tr>
<td>105</td>
<td>6</td>
<td>98 AND DOUBLE BLIND PROCEDURE?</td>
</tr>
<tr>
<td>Nr</td>
<td>Hits</td>
<td>Suchformulierung</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>106</td>
<td>0</td>
<td>08 AND DOUBLE#BLIND METHOD</td>
</tr>
<tr>
<td>110</td>
<td>0</td>
<td>08 AND CROSS#OVER STUD?</td>
</tr>
<tr>
<td>111</td>
<td>0</td>
<td>08 AND CROSSOVER PROCEDURE?</td>
</tr>
<tr>
<td>112</td>
<td>21</td>
<td>08 AND RCT?</td>
</tr>
<tr>
<td>113</td>
<td>352</td>
<td>08 AND RANDOMI%ED? ? CONTROLLED? ? TRIAL?</td>
</tr>
<tr>
<td>114</td>
<td>120</td>
<td>08 AND RANDOMI%ED? ? CONTROLLED? ? STUD?</td>
</tr>
<tr>
<td>115</td>
<td>45</td>
<td>08 AND RANDOMI%ED? ? CLINICAL? ? TRIAL?</td>
</tr>
<tr>
<td>116</td>
<td>31</td>
<td>08 AND RANDOMI%ED? ? CLINICAL? ? STUD?</td>
</tr>
<tr>
<td>117</td>
<td>241</td>
<td>08 AND RANDOMI%ED? ? STUD?</td>
</tr>
<tr>
<td>118</td>
<td>468</td>
<td>08 AND RANDOMI%ED? ? TRIAL?</td>
</tr>
<tr>
<td>119</td>
<td>37</td>
<td>08 AND RANDOMISIERT? ? STUDIE?</td>
</tr>
<tr>
<td>120</td>
<td>2</td>
<td>08 AND RANDOMISIERT? ? VERSUCH?</td>
</tr>
<tr>
<td>121</td>
<td>46</td>
<td>08 AND RANDOM? ?, ALLOCAT?</td>
</tr>
<tr>
<td>122</td>
<td>0</td>
<td>08 AND SINGLE#BLIND?</td>
</tr>
<tr>
<td>123</td>
<td>17</td>
<td>08 AND SINGLE BLIND?</td>
</tr>
<tr>
<td>124</td>
<td>0</td>
<td>08 AND DOUBLE#BLIND?</td>
</tr>
<tr>
<td>125</td>
<td>40</td>
<td>08 AND DOUBLE BLIND?</td>
</tr>
<tr>
<td>126</td>
<td>0</td>
<td>08 AND TRIPLE#BLIND?</td>
</tr>
<tr>
<td>127</td>
<td>0</td>
<td>08 AND TRIPLE BLIND?</td>
</tr>
<tr>
<td>128</td>
<td>11</td>
<td>08 AND EINFACH? AND (BLIND? OR VERBLIND?)</td>
</tr>
<tr>
<td>129</td>
<td>11</td>
<td>08 AND DOPPEL? AND (BLIND? OR VERBLIND?)</td>
</tr>
<tr>
<td>130</td>
<td>0</td>
<td>08 AND ZWEIFACH? AND (BLIND? OR VERBLIND?)</td>
</tr>
<tr>
<td>131</td>
<td>0</td>
<td>08 AND DREIFACH? AND (BLIND? OR VERBLIND?)</td>
</tr>
<tr>
<td>132</td>
<td>192</td>
<td>08 AND (BLIND OR BLINDED) AND (STUD? OR TRIAL?)</td>
</tr>
<tr>
<td>133</td>
<td>193</td>
<td>08 AND (BLIND? OR VERBLIND?) AND (STUD? OR VERSUCH?)</td>
</tr>
<tr>
<td>134</td>
<td>0</td>
<td>08 AND (SEMI.BLIND? OR SEMIVERBLIND) AND (STUD? OR TRIAL? OR VERSUCH?)</td>
</tr>
<tr>
<td>135</td>
<td>12</td>
<td>08 AND ZUFALL?</td>
</tr>
<tr>
<td>136</td>
<td>1</td>
<td>08 AND CROSS#OVER?</td>
</tr>
<tr>
<td>137</td>
<td>1</td>
<td>08 AND CROSS OVER?</td>
</tr>
<tr>
<td>138</td>
<td>0</td>
<td>08 AND UEBERKREUZ?</td>
</tr>
<tr>
<td>140</td>
<td>7</td>
<td>08 AND MASK?</td>
</tr>
<tr>
<td>141</td>
<td>705</td>
<td>09 TO 140</td>
</tr>
<tr>
<td>142</td>
<td>3</td>
<td>08 AND CCT</td>
</tr>
<tr>
<td>Nr</td>
<td>Hits</td>
<td>Suchformulierung</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>143</td>
<td>31</td>
<td>98 AND CONTROLLED CLINICAL TRIAL</td>
</tr>
<tr>
<td>144</td>
<td>37</td>
<td>98 AND CONTROLLED CLINICAL TRIAL?</td>
</tr>
<tr>
<td>145</td>
<td>1</td>
<td>98 AND KONTROLLIERTE KLINISCHE STUDIEN</td>
</tr>
<tr>
<td>146</td>
<td>3</td>
<td>98 AND CCT</td>
</tr>
<tr>
<td>147</td>
<td>70</td>
<td>98 AND CONTROLLED? ? CLINICAL? ? TRIAL?</td>
</tr>
<tr>
<td>150</td>
<td>0</td>
<td>98 AND KONTROLLIERT? ? KLINISCH? ? VERSUCH?</td>
</tr>
<tr>
<td>151</td>
<td>435</td>
<td>98 AND CONTROLLED? ? TRIAL?</td>
</tr>
<tr>
<td>152</td>
<td>659</td>
<td>98 AND CONTROLLED? ? STUD?</td>
</tr>
<tr>
<td>153</td>
<td>36</td>
<td>98 AND KONTROLLIERT? ? STUDIE?</td>
</tr>
<tr>
<td>154</td>
<td>2</td>
<td>98 AND KONTROLLIERT? ? VERSUCH?</td>
</tr>
<tr>
<td>155</td>
<td>950</td>
<td>142 TO 154</td>
</tr>
<tr>
<td>156</td>
<td>474</td>
<td>98 AND PROSPECTIVE STUD?</td>
</tr>
<tr>
<td>157</td>
<td>168</td>
<td>98 AND PROSPEKTIVE STUDIEN</td>
</tr>
<tr>
<td>158</td>
<td>493</td>
<td>98 AND PROSPEKTIVE (STUD? OR TRIAL?)</td>
</tr>
<tr>
<td>159</td>
<td>493</td>
<td>156 TO 158</td>
</tr>
<tr>
<td>160</td>
<td>950</td>
<td>155</td>
</tr>
<tr>
<td>161</td>
<td>705</td>
<td>141</td>
</tr>
<tr>
<td>162</td>
<td>1524</td>
<td>159 TO 161</td>
</tr>
<tr>
<td>163</td>
<td>5914</td>
<td>S=62</td>
</tr>
<tr>
<td>164</td>
<td>576</td>
<td>163 AND ((COMPARATIVE? OR VERGLEICH?) AND (STUD? OR TRIAL?))</td>
</tr>
<tr>
<td>165</td>
<td>2</td>
<td>163 AND (FALL#KONTROL#STUD? OR FALLKONTROLLSTUD?)</td>
</tr>
<tr>
<td>166</td>
<td>428</td>
<td>163 AND ((VALIDATION OR PERFORMANCE) AND (STUD? OR TRIAL? OR TEST))</td>
</tr>
<tr>
<td>167</td>
<td>137</td>
<td>163 AND (CASE#CONTROL STUD? OR CASE CONTROL STUD?)</td>
</tr>
<tr>
<td>168</td>
<td>481</td>
<td>163 AND CLINICAL TRIAL</td>
</tr>
<tr>
<td>169</td>
<td>106</td>
<td>163 AND EVALUATION STUD?</td>
</tr>
<tr>
<td>170</td>
<td>48</td>
<td>163 AND (%ORRELATION? STUD? OR %ORRELATION? ANALYS?)</td>
</tr>
<tr>
<td>171</td>
<td>155</td>
<td>163 AND (MULTICENTER STUD? OR ROC STUD?)</td>
</tr>
<tr>
<td>172</td>
<td>717</td>
<td>163 AND ((FOLLOW#UP OR FOLLOW UP) AND (STUD? OR TRIAL?))</td>
</tr>
<tr>
<td>173</td>
<td>126</td>
<td>163 AND ((VERLAUF? OR VERLAUFSKONTROLL?) AND STUD?)</td>
</tr>
<tr>
<td>174</td>
<td>149</td>
<td>163 AND (COHORT ANALYSIS? OR COHORT STUD? OR KOHORTENSTUD?)</td>
</tr>
<tr>
<td>175</td>
<td>363</td>
<td>163 AND (RETROSPEKTIVE AND (STUD? OR TRIAL?))</td>
</tr>
<tr>
<td>Nr</td>
<td>Hits</td>
<td>Suchformulierung</td>
</tr>
<tr>
<td>----</td>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td>176</td>
<td>13</td>
<td>163 AND (LONGITUDINAL STUD? OR LÄNGSSCHNITTSTUDIE# OR LAENGSSCHNITTSTUDIE#)</td>
</tr>
<tr>
<td>177</td>
<td>83</td>
<td>163 AND (CROSS#SECTION? STUD? OR CROSS SECTION? STUD? OR QUERSCHNITTSTUDIE#)</td>
</tr>
<tr>
<td>178</td>
<td>2290</td>
<td>164 TO 177</td>
</tr>
<tr>
<td>179</td>
<td>27</td>
<td>S=79</td>
</tr>
<tr>
<td>180</td>
<td>25</td>
<td>check duplicates: unique in s=179</td>
</tr>
<tr>
<td>181</td>
<td>1475</td>
<td>S=97</td>
</tr>
<tr>
<td>182</td>
<td>957</td>
<td>check duplicates: unique in s=181</td>
</tr>
<tr>
<td>183</td>
<td>1524</td>
<td>S=162</td>
</tr>
<tr>
<td>184</td>
<td>1059</td>
<td>check duplicates: unique in s=183</td>
</tr>
<tr>
<td>185</td>
<td>9449</td>
<td>S=18 AND S=33</td>
</tr>
<tr>
<td>186</td>
<td>418</td>
<td>185 AND ECONOMICS</td>
</tr>
<tr>
<td>187</td>
<td>188</td>
<td>185 AND (ÖKONOMIE OR OEKONOMIE)</td>
</tr>
<tr>
<td>188</td>
<td>5</td>
<td>185 AND SOCIOECONOMICS</td>
</tr>
<tr>
<td>189</td>
<td>7</td>
<td>185 AND MODELS, ECONOMIC</td>
</tr>
<tr>
<td>190</td>
<td>5</td>
<td>185 AND ECONOMIC ASPECT</td>
</tr>
<tr>
<td>191</td>
<td>0</td>
<td>185 AND ECONOMICS, MEDICAL</td>
</tr>
<tr>
<td>192</td>
<td>8</td>
<td>185 AND HEALTH ECONOMICS</td>
</tr>
<tr>
<td>193</td>
<td>886</td>
<td>185 AND COST?</td>
</tr>
<tr>
<td>194</td>
<td>182</td>
<td>185 AND KOSTEN?</td>
</tr>
<tr>
<td>195</td>
<td>88</td>
<td>185 AND EFFICIENCY?</td>
</tr>
<tr>
<td>196</td>
<td>620</td>
<td>185 AND EFFECTIVENESS</td>
</tr>
<tr>
<td>197</td>
<td>499</td>
<td>185 AND EFFICACY?</td>
</tr>
<tr>
<td>198</td>
<td>8</td>
<td>185 AND EFFIZIENZ</td>
</tr>
<tr>
<td>199</td>
<td>35</td>
<td>185 AND COST ANALYSIS</td>
</tr>
<tr>
<td>202</td>
<td>418</td>
<td>185 AND ECONOMICS</td>
</tr>
<tr>
<td>203</td>
<td>549</td>
<td>185 AND (ECONOMI? OR OEKONOMI?)</td>
</tr>
<tr>
<td>204</td>
<td>0</td>
<td>185 AND GESUNDHEITSOEKONOMIE</td>
</tr>
<tr>
<td>205</td>
<td>88</td>
<td>185 AND EFFICIENC?</td>
</tr>
<tr>
<td>206</td>
<td>504</td>
<td>185 AND EFFICAC###</td>
</tr>
<tr>
<td>207</td>
<td>8</td>
<td>185 AND EFFIZIENZ##</td>
</tr>
<tr>
<td>208</td>
<td>40</td>
<td>185 AND ECONOMIC EVALUATION?</td>
</tr>
<tr>
<td>209</td>
<td>2</td>
<td>185 AND HEALTH CARE FINANCING?</td>
</tr>
<tr>
<td>Nr</td>
<td>Hits</td>
<td>Suchformulierung</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>212</td>
<td>413</td>
<td>185 AND (COST?, ? EFFECTIVENESS? AND (STUD? OR TRIAL? OR RATIO? OR ANALYSIS?))</td>
</tr>
<tr>
<td>219</td>
<td>357</td>
<td>185 AND (COST?, ? ANALYS? AND (STUD? OR TRIAL?))</td>
</tr>
<tr>
<td>220</td>
<td>148</td>
<td>185 AND (KOSTEN?, ? NUTZEN? AND (STUDIE? OR ANALYSE?))</td>
</tr>
<tr>
<td>221</td>
<td>148</td>
<td>185 AND (KOSTEN?, ? NUTZEN? AND (STUDIE? OR ANALYSE?))</td>
</tr>
<tr>
<td>222</td>
<td>7</td>
<td>185 AND (KOSTEN?, ? WIRKSAMKEIT? AND (STUDIE? OR ANALYSE?))</td>
</tr>
<tr>
<td>223</td>
<td>7</td>
<td>185 AND (KOSTEN?, ? EFPEKTIVIT? AND (STUDIE? OR ANALYSE?))</td>
</tr>
<tr>
<td>224</td>
<td>2</td>
<td>185 AND (KOSTEN?, ? EFFIZIENZ? AND (STUDIE? OR ANALYSE?))</td>
</tr>
<tr>
<td>225</td>
<td>42</td>
<td>185 AND (KOSTEN? ? ANALYSE?) AND STUDIE?</td>
</tr>
<tr>
<td>226</td>
<td>1680</td>
<td>186 TO 225</td>
</tr>
<tr>
<td>227</td>
<td>15</td>
<td>185 AND PHARMACOECONOMICS</td>
</tr>
<tr>
<td>228</td>
<td>15</td>
<td>185 AND (PHARMACOECONOMIC? OR PHARMAKOEKONOMI?)</td>
</tr>
<tr>
<td>229</td>
<td>15</td>
<td>227 OR 228</td>
</tr>
<tr>
<td>230</td>
<td>1680</td>
<td>226 OR 229</td>
</tr>
<tr>
<td>231</td>
<td>1055</td>
<td>check duplicates: unique in s=230</td>
</tr>
<tr>
<td>232</td>
<td>30259</td>
<td>33</td>
</tr>
<tr>
<td>233</td>
<td>58</td>
<td>232 AND ETHICS</td>
</tr>
<tr>
<td>234</td>
<td>1</td>
<td>232 AND BIOETHICS</td>
</tr>
<tr>
<td>235</td>
<td>2</td>
<td>232 AND ETHICS, CLINICAL</td>
</tr>
<tr>
<td>236</td>
<td>0</td>
<td>232 AND ETHICAL ANALYSIS</td>
</tr>
<tr>
<td>237</td>
<td>4</td>
<td>232 AND ETHIK</td>
</tr>
<tr>
<td>238</td>
<td>1</td>
<td>232 AND BIOETHIK</td>
</tr>
<tr>
<td>239</td>
<td>0</td>
<td>232 AND BIOETHISCHE FRAGESTELLUNGEN</td>
</tr>
<tr>
<td>240</td>
<td>0</td>
<td>232 AND ETHIK, KLINISCHE</td>
</tr>
<tr>
<td>241</td>
<td>1</td>
<td>232 AND ETHISCHE ANALYSE</td>
</tr>
<tr>
<td>Nr</td>
<td>Hits</td>
<td>Suchformulierung</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>242</td>
<td>58</td>
<td>233 TO 241</td>
</tr>
<tr>
<td>243</td>
<td>42</td>
<td>check duplicates: unique in s=242</td>
</tr>
<tr>
<td>244</td>
<td>30259</td>
<td>S=33</td>
</tr>
<tr>
<td>245</td>
<td>5</td>
<td>244 AND JUSTICE</td>
</tr>
<tr>
<td>246</td>
<td>1</td>
<td>244 AND SOCIAL JUSTICE</td>
</tr>
<tr>
<td>247</td>
<td>3</td>
<td>244 AND HUMAN RIGHTS</td>
</tr>
<tr>
<td>248</td>
<td>1</td>
<td>244 AND CIVIL RIGHTS</td>
</tr>
<tr>
<td>249</td>
<td>0</td>
<td>244 AND MENSCHENRECHTE</td>
</tr>
<tr>
<td>250</td>
<td>0</td>
<td>244 AND VERbrauchersCHUTZRECHTE</td>
</tr>
<tr>
<td>251</td>
<td>2</td>
<td>244 AND PATIENTENRECHTE</td>
</tr>
<tr>
<td>252</td>
<td>8</td>
<td>245 TO 251</td>
</tr>
<tr>
<td>253</td>
<td>7</td>
<td>check duplicates: unique in s=252</td>
</tr>
<tr>
<td>273</td>
<td>14</td>
<td>S=180 AND ((PY)>=2003) AND LA=(GERM OR ENGL)</td>
</tr>
<tr>
<td>274</td>
<td>587</td>
<td>S=182 AND ((PY)>=2003) AND LA=(GERM OR ENGL)</td>
</tr>
<tr>
<td>275</td>
<td>683</td>
<td>S=184 AND ((PY)>=2003) AND LA=(GERM OR ENGL)</td>
</tr>
<tr>
<td>276</td>
<td>2290</td>
<td>S=178</td>
</tr>
<tr>
<td>277</td>
<td>1539</td>
<td>check duplicates: unique in s=276</td>
</tr>
<tr>
<td>278</td>
<td>1015</td>
<td>S=277 AND ((PY)>=2003) AND LA=(GERM OR ENGL)</td>
</tr>
<tr>
<td>279</td>
<td>605</td>
<td>S=231 AND ((PY)>=2003) AND LA=(GERM OR ENGL)</td>
</tr>
<tr>
<td>280</td>
<td>29</td>
<td>S=243 AND ((PY)>=2003) AND LA=(GERM OR ENGL)</td>
</tr>
<tr>
<td>281</td>
<td>6</td>
<td>S=253 AND ((PY)>=2003) AND LA=(GERM OR ENGL)</td>
</tr>
<tr>
<td>282</td>
<td>1955</td>
<td>273 OR 274 OR 275 OR 278 OR 279 OR 280 OR 281</td>
</tr>
<tr>
<td>283</td>
<td>1711</td>
<td>check duplicates: unique in s=283</td>
</tr>
</tbody>
</table>
8.4 Tabellen

8.4.1 Tabellen zur medizinischen Bewertung

8.4.1.1 Metaanalysen und systematische Übersichtsarbeiten

Tabelle 19: Banerjee et al. 2006

<table>
<thead>
<tr>
<th>CT Colonography for Colon Cancer Screening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ziel/Fragestellung</td>
</tr>
<tr>
<td>Design</td>
</tr>
<tr>
<td>Literaturdatenbanken</td>
</tr>
<tr>
<td>Suchzeitraum</td>
</tr>
<tr>
<td>Methodik (soweit angegeben)</td>
</tr>
<tr>
<td>Eingeschlossene Primärstudien</td>
</tr>
<tr>
<td>Einschlusskriterien (soweit angegeben)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>** Ausschlusskriterien**</td>
</tr>
<tr>
<td>Goldstandard</td>
</tr>
<tr>
<td>Technik CTC</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Darstellung 2-D/3-D</td>
</tr>
<tr>
<td>Rücken-/Bauchlage</td>
</tr>
</tbody>
</table>

Mögliche Interessenkonflikte der Autoren

K. A.

Schlussfolgerungen

Keine Schlussfolgerungen

Bemerkungen

Keine definierte Fragestellung
Keine Zusammenfassung

CTC = Computertomografie-Koloskopie. K. A. = keine Angaben. 2-D = Zweidimensional. 3-D = Drei- dimensional.
Quelle: Banerjee et al. 2006, ÖBIG-FP-eigene Darstellung

Tabelle 20: Halligan et al. 2005

<table>
<thead>
<tr>
<th>CT Colonography in the Detection of Colorectal Polyps and Cancer: Systematic Review, Meta-Analysis, and Proposed Minimum Data Set for Study Level Reporting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ziel/Fragestellung</td>
</tr>
<tr>
<td>Design</td>
</tr>
<tr>
<td>Literaturdatenbanken</td>
</tr>
<tr>
<td>Suchzeitraum</td>
</tr>
</tbody>
</table>
Fortsetzung Tabelle 20: Halligan et al. 2005

<table>
<thead>
<tr>
<th>CT Colonography in the Detection of Colorectal Polyps and Cancer: Systematic Review, Meta-Analysis, and Proposed Minimum Data Set for Study Level Reporting¹⁰⁴</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methodik (soweit angegeben)</td>
</tr>
<tr>
<td>- Literatursuche (nur MEDLINE) und Literaturselektion von 2 Reviewern unabhängig voneinander</td>
</tr>
<tr>
<td>- Bei allen Studien mit ausreichend Datenangaben (Autorennachfragen wurden ggf. versucht) Berechnung Sensitivität und Spezifität pro Patient, bei Polypen drei Kategorien: „large“ (i. d. R. > 9 mm), „medium and large“ (i. d. R. > 5 mm), „all polyps“ (alle Polypen ohne Minimumgröße)</td>
</tr>
</tbody>
</table>

| **Metaanalyse** |
| - Gepoolter Parameter: Sensitivität und Spezifität pro Patient abhängig von Polypengröße (nach 3 Kategorien, siehe oben), Sensitivität pro Polyp abhängig von Polypengröße (nach 3 Kategorien, siehe oben) |
| - Modell mit zufälligen Effekten, SROC |
| - Statistische Heterogenität: Chi-Quadrat-Test |
| - Software: Stata 8.0, SAS |

| **Eingeschlossene Primärstudien** |
| 24 Studien (Jahre 1999 bis 2003) |

| **Einschlusskriterien (soweit angegeben)** |
| - Vollpublikationen |
| - In vivo, Humanstudien |
| - Peer Review |
| - Verblindete Auswertung des CTC-Befunds |
| - Patientenzahl mindestens 30 |
| - Fragestellung: Erkennung von kolorektalen Polypen |
| - Goldstandard Koloskopie oder chirurgische Evaluierung |
| - Vollständige Darmvorbereitung, CTC in Rücken- und Bauchlage, mindestens Spiral-CT (Einzellendetektor)¹ |
| - Kostenzielt verfügbare Auswertungssoftware |
| - Verwendung von 2-D- und zumindest in Problemfällen 3-D-Darstellung |

| **Ausschlusskriterien** |
| - Anwendung eines Kriteriums zur Patientenselektion, aufgrund dessen die Begutachtung von vornherein von einer sehr hohen Krankheitsprävalenz ausgehen können |
| - Studien, in denen die CTC aufgrund einer inkompletten Koloskopie (wegen eines Tumors) erfolgte, außer die betreffende Patientengruppe machte in der Studie weniger als 50 % aus bzw. konnte in der Datenextraktion ausgeschlossen werden |
| - Experimentelle Studien |
| - Studien mit routinemäßiger Verabreichung von Kontrastmittel (intravenös), außer wenn nur bei einem Teil der Patienten und Daten exkludierbar |
| - Studien, die CAD-Systeme verwenden |

| **Population** |
| - 4.181 Patienten (Range: Studiengröße 33 bis 1.233, Ø 174²) |
| - Ø Alter: k. A. |
| - Anteil männlich: k. A. |
| - Krankheitsprävalenz der Studien (Patienten mit Polypen oder Krebs) zwischen 15 und 72 % |
| - Nur in einer Studie (1.233 Patienten) ausschließlich asymptomatische Patienten ohne bekannte Vorerkrankung |

| **Goldstandard** |
| - Koloskopie: offenbar 18 Studien³ |
| - Koloskopie mit segmenteller Entblindung: 6 Studien |

| **Technik CTC** |
| Keine näheren Angaben zu den einzelnen Studien |

| **Mögliche Interessenkonflikte der Autoren** |
| Zwei Autoren üben bezahlte Forschungs- und Beratungstätigkeiten für die Firma Medicsight (London, England; Entwicklung von CAD-Software) aus. Unterstützung der Studie durch eine Zuwendung der European Association of Radiology |
Tabelle 20: Halligan et al. 2005

<table>
<thead>
<tr>
<th>Ergebnisse der Metaanalyse</th>
<th>Sensitivität CTC (pro Patient)*</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>all polyps</code> (12): keine Berechnung wegen zu großer Heterogenität, Range: 45–97 %</td>
<td></td>
</tr>
<tr>
<td><code>medium and large</code> (7): 86 % [75–93]</td>
<td></td>
</tr>
<tr>
<td><code>large</code> (7): 93 % [73–98]</td>
<td></td>
</tr>
<tr>
<td>Spezifität CTC (pro Patient)²</td>
<td></td>
</tr>
<tr>
<td><code>all polyps</code> (12): keine Berechnung wegen zu großer Heterogenität, Range: 26–97 %</td>
<td></td>
</tr>
<tr>
<td><code>medium and large</code> (7): 86 % [76–93]</td>
<td></td>
</tr>
<tr>
<td><code>large</code> (7): 97 % [95–99]</td>
<td></td>
</tr>
</tbody>
</table>

Heterogenität

Bemerkungen

Die Autoren kritisieren die heterogene und unvollständige Datenbeschreibung (data reporting) in den Primärstudien und schlagen ein Set von Minimalanforderungen an die Datenbeschreibung vor.

Meta-Analysis: Computed Tomographic Colonography

<table>
<thead>
<tr>
<th>Ziel/Fragestellung</th>
<th>Systematischer Vergleich der Testgüte von CTC im Vergleich zu Koloskopie bzw. chirurgischer Evaluierung; Einschätzung der Variablen, die die Testgüte beeinflussen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design</td>
<td>Systematische Übersichtsarbeit und Metaanalyse</td>
</tr>
<tr>
<td>Literaturdatenbanken</td>
<td>PubMed, EMBASE, MEDLINE, CCTR</td>
</tr>
<tr>
<td>Suchzeitraum</td>
<td>1975 bis 2005</td>
</tr>
</tbody>
</table>
| Methodik (soweit angegeben) | Literatursuche und Datenextraktion von 2 Reviewern unabhängig voneinander
Beiden allen Studien mit ausreichend Datenangaben Berechnung von Sensitivität und Spezifität pro Patient und pro Polyp, bei Polypen 3 Kategorien: < 6 mm, 6–9 mm, > 9 mm |
| Metaanalyse | Gepoolter Parameter: Sensitivität und Spezifität pro Patient (gesamt und nach Polypengröße)
Modell mit zufälligen Effekten
Statistische Heterogenität: τ²-Statistik
Subgruppenanalysen nach Publikationsjahr, Auswertungsmodus, Kollimation, Rekonstruktionsintervall, Scannertyp, Kontrastmittelgabe
Software: Stata 8.2 |
| Eingeschlossene Primärstudien | 33 Studien (Jahre: 1997-2005) |
| Einschlusskriterien (soweit angegeben) | Prospektives Design
Verblindete Auswertung
Studienpopulation: erwachsene Patienten, bei denen eine CTC nach vollständiger Darmvorbereitung durchgeführt wird, gefolgt von vollständiger Koloskopie oder chirurgischer Evaluierung
Mindestens Einzeilendetektor mit Kolondistension mit Luft oder Kohlendioxid, Scanintervalle max. 5 mm, Verwendung von 2-D- und 3-D-Darstellungen
Rücken- und Bauchlage |
| Ausschlusskriterien | K. A. |
Fortsetzung Tabelle 21: Mulhall et al. 2005

Meta-Analysis: Computed Tomographic Colonography

<table>
<thead>
<tr>
<th>Population</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td></td>
</tr>
<tr>
<td>• 6.393 Patienten (Range: Studiengröße 20 bis 1.233, Ø 248)</td>
<td></td>
</tr>
<tr>
<td>• Ø Alter: 61,9 Jahre</td>
<td></td>
</tr>
<tr>
<td>• Anteil männlich: 63,6 %</td>
<td></td>
</tr>
<tr>
<td>• Anteil der Patienten mit hohem Dickdarmkrebsrisiko: 74 %</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Goldstandard</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Goldstandard</td>
<td></td>
</tr>
<tr>
<td>• Koloskopie: 18 Studien</td>
<td></td>
</tr>
<tr>
<td>• Koloskopie mit segmentaler Entblinuing: 8 Studien</td>
<td></td>
</tr>
<tr>
<td>• Optimierte Koloskopie: 2 Studien</td>
<td></td>
</tr>
<tr>
<td>• Kombination mehrerer Methoden: 5 Studien</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Technik CTC</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Technik CTC</td>
<td></td>
</tr>
<tr>
<td>• Einzeilendetektor: 16 Studien</td>
<td></td>
</tr>
<tr>
<td>• Mehrzeilendetektor: 13 Studien</td>
<td></td>
</tr>
<tr>
<td>• Ein- und Mehrzeilendetektor: 4 Studien</td>
<td></td>
</tr>
<tr>
<td>• Ø Kollimation: 4 mm (Range: 1 bis 5)</td>
<td></td>
</tr>
<tr>
<td>• Ø Rekonstruktionsintervall: 1,86 mm (Range: 1 bis 5)</td>
<td></td>
</tr>
<tr>
<td>• 2-D und 3-D bei ausgewählten Schichten: 17 Studien</td>
<td></td>
</tr>
<tr>
<td>• 2-D und 3-D: 14 Studien</td>
<td></td>
</tr>
<tr>
<td>• „fly through“ und 2-D: 2 Studien</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mögliche Interessenkonflikte der Autoren</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mögliche Interessenkonflikte der Autoren</td>
<td>Keine (finanzieller Natur)</td>
</tr>
</tbody>
</table>

Ergebnisse der Metaanalyse

<table>
<thead>
<tr>
<th>Sensitivität CTC (pro Patient)¹</th>
<th>Spezifität CTC (pro Patient)¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polypen < 6 mm (8): 48 % [25–70]</td>
<td>Polypen < 6 mm (4): 91 % [89–95]</td>
</tr>
<tr>
<td>Polypen 6 bis 9 mm (12): 70 % [55–84]</td>
<td>Polypen 6 bis 9 mm (6): 93 % [91–95]</td>
</tr>
<tr>
<td>Polypen > 9 mm (19): 85 % [79–91]</td>
<td>Polypen > 9 mm (15): 97 % [96–97]</td>
</tr>
</tbody>
</table>

Kein Anzeichen für Schwellenwerteffekte zwischen Sensitivität und Spezifität (Spearman-Statistik, ROC)

Heterogenität

Sensitivität:

- Alle Ergebnisse statistisch heterogen (p < 0,001), verursacht v. a. durch Heterogenität zw. den Studien
- χ^2-Statistik: k. A. für Gesamtsensitivität, 96,7 % bei Polypen < 6 mm, 93,1 % bei Polypen 6–9 mm, 85,2 % bei Polypen > 9 mm

Subgruppenanalysen (Reihung nach den Ergebnissen für Sensitivität):

- Geringe Kollimation < höhere Kollimation (Anstieg der Sensitivität um 4,9 % bei Reduktion um 1 mm, 95-%-KI 0,8–7,1 %)
- Mehrzeilendetektor > Einzeilendetektor
- „fly-through“ und 2-D > 2-D und 3-D > 2-D und 3-D bei Unklarheiten

Keine Erklärung der Heterogenität durch

- Publikationsjahr
- Typ der Scannerhard- oder software
- Rekonstruktionsintervall
- Verwendung von Kontrastmittel
- Alter, Geschlecht oder Ausgangsrisiko der Patienten

Spezifität:

- χ^2-Statistik: 92,6 % bei Gesamtspezifität, $p = 0,001$; 47,1 % bei Polypen < 6 mm, $p = 0,15$; 50 % bei Polypen 6–9 mm, $p = 0,07$; 41,8 % bei Polypen > 9 mm, $p = 0,2$

¹Angaben in runder Klammer: Anzahl der gepoolten Studien; Angaben in eckigen Klammer: 95-%-KI (in %).

CCTR = Cochrane Central Register of Controlled Trials. CTC = Computertomografie-Koloskopie. K. A. = Keine Angaben. KI = Konfidenzintervall. $p = p$-Wert. ROC=Receiver-operating charactaristic curves. 2-D = zweidimensional, 3-D = dreidimensional.

Quelle: Mulhall et al. 2005, ÖBIG-FP-eigene Darstellung
Tabelle 22: Blue Cross Blue Shield Association 2004

<table>
<thead>
<tr>
<th>CT colonography ("virtual colonoscopy") for colon cancer screening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ziel/Fragestellung</td>
</tr>
<tr>
<td>Diagnostische Performance der CTC im Vergleich zur Koloskopie in der Erkennung von adenomatösen Polypen; Evidenz für eine Verbesserung bei langfristigen Endpunkten durch Einsatz der CTC im Darmkrebscreening?</td>
</tr>
<tr>
<td>Design</td>
</tr>
<tr>
<td>Systematische Übersichtsanalyse</td>
</tr>
<tr>
<td>Literaturdatenbanken</td>
</tr>
<tr>
<td>MEDLINE</td>
</tr>
<tr>
<td>Suchzeitraum</td>
</tr>
<tr>
<td>Bis Juni 2004</td>
</tr>
<tr>
<td>Methodik (soweit angegeben)</td>
</tr>
<tr>
<td>Keine weiteren Angaben zur Studienselektion und Datenextraktion</td>
</tr>
<tr>
<td>Eingeschlossene Primärstudien</td>
</tr>
<tr>
<td>11 Studien (Jahre 1997 bis 2003)</td>
</tr>
<tr>
<td>Einschlusskriterien (soweit angegeben)</td>
</tr>
<tr>
<td>• Prospektives Design</td>
</tr>
<tr>
<td>• CTC und Koloskopie bei allen Patienten</td>
</tr>
<tr>
<td>• Patientenzahl: mindestens 50</td>
</tr>
<tr>
<td>• Valider Goldstandard (i. d. R. Koloskopie)</td>
</tr>
<tr>
<td>• Valide Daten pro Patient, die Berechnung von Sensitivität und Spezifität bei festgelegtem Schwellenwert erlauben</td>
</tr>
<tr>
<td>• Adäquate Daten, die Berechnung von Prävalenzraten der Polypen erlauben</td>
</tr>
<tr>
<td>Ausschlusskriterien</td>
</tr>
<tr>
<td>K. A.</td>
</tr>
<tr>
<td>Goldstandard</td>
</tr>
<tr>
<td>Keine weiteren Angaben</td>
</tr>
<tr>
<td>Technik CTC</td>
</tr>
<tr>
<td>Einzeilen- bzw Mehrzeilendetektor: keine durchgängigen Angaben</td>
</tr>
<tr>
<td>• Kollimation: Range: 1,25 mm bis 5 mm</td>
</tr>
<tr>
<td>• Rekonstruktionsintervall: Range: 1 mm bis 3 mm</td>
</tr>
<tr>
<td>Darstellung 2-D/3-D: keine durchgängigen Angaben</td>
</tr>
<tr>
<td>Rücken-/Bauchalage: k. A.</td>
</tr>
<tr>
<td>Mögliche Interessenkonflikte der Autoren</td>
</tr>
<tr>
<td>K. A.</td>
</tr>
<tr>
<td>Schlussfolgerungen</td>
</tr>
<tr>
<td>Die CTC stellt nach den Technology Evaluation Center-Kriterien keine Alternative zur konventionellen Koloskopie dar.</td>
</tr>
<tr>
<td>Bemerkungen</td>
</tr>
<tr>
<td>Die Evaluierung basiert auf fünf Kriterien des Technology Evaluation Center:</td>
</tr>
<tr>
<td>1. Die Technologie muss von den entsprechenden Regierungsbehörden freigegeben sein: Dies scheint der Fall zu sein.</td>
</tr>
<tr>
<td>2. Die wissenschaftliche Evidenz muss Schlussfolgerungen bezüglich der Technologie hinsichtlich gesundheitsbezogener Endpunkte erlauben: Diesbezüglich wird die Datenlage als unzureichend eingestuft.</td>
</tr>
<tr>
<td>3. Die Technik muss gesundheitsbezogene Endpunkte (net health outcomes) verbessern: Dafür gibt es keine Evidenz. (Einschränkend wird angegeben, dass auch für die konventionelle Koloskopie als Referenzmethode die Evidenz nur indirekt ist.)</td>
</tr>
</tbody>
</table>

CTC = Computertomografie-Koloskopie. K. A. = keine Angaben. 2-D = Zweidimensional. 3-D = Dreidimensional.
Quelle: Blue Cross Blue Shield Association 2004, OBIG-FP-eigene Darstellung
Tabelle 23: Medical Advisory Secretary, Ontario Ministry of Health and Long-Term Care 2003

<table>
<thead>
<tr>
<th>Computed tomographic colonography (virtual colonoscopy)219</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ziel/Fragestellung</td>
</tr>
<tr>
<td>Design</td>
</tr>
<tr>
<td>Literaturdatenbanken</td>
</tr>
<tr>
<td>Suchzeitraum</td>
</tr>
<tr>
<td>Methodik (soweit angegeben)</td>
</tr>
<tr>
<td>Eingeschlossene Primästudien</td>
</tr>
<tr>
<td>Einschlusskriterien (soweit angegeben)</td>
</tr>
<tr>
<td>Ausschlusskriterien</td>
</tr>
<tr>
<td>Goldstandard</td>
</tr>
<tr>
<td>Mögliche Interessenkonflikte der Autoren</td>
</tr>
<tr>
<td>Schlussfolgerungen</td>
</tr>
</tbody>
</table>

CTC = Computertomografie-Koloskopie. K. A. = keine Angaben. KRK = Kolorektales Karzinom. 2-D = Zweidimensional. 3-D = Dreidimensional. Quelle: Medical Advisory Secretary, Ontario Ministry of Health and Long-Term Care 2003, ÖBIG-FP - eigene Darstellung
Tabelle 24: Sosna et al. 2003

<table>
<thead>
<tr>
<th>CT Colonography of Colorectal Polyps: A Metaanalysis [330]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ziel/Fragestellung</td>
</tr>
<tr>
<td>Design</td>
</tr>
<tr>
<td>Literaturdatenbanken</td>
</tr>
<tr>
<td>Suchzeitraum</td>
</tr>
<tr>
<td>Methodik (soweit angegeben)</td>
</tr>
<tr>
<td>Metaanalyse</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Eingeschlossene Primärstudien</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Einschlusskriterien</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ausschlusskriterien</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Population</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Goldstandard</td>
</tr>
<tr>
<td>Technik CTC</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Mögliche Interessenkonflikte der Autoren</td>
</tr>
</tbody>
</table>
Ergebnisse der Metaanalyse

* Berechnung unabhängig von Studiengrößen, Range für die anderen Berechnungsalgorithmen in den Fußnoten

<table>
<thead>
<tr>
<th>CT Colonography of Colorectal Polyps: A Metaanalysis</th>
<th>Sensitivität CTC (pro Patient)</th>
<th>Spezifität CTC (pro Patient)</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Bewertung unabhängig von Studiengrößen, Range für die anderen Berechnungsalgorithmen in den Fußnoten</td>
<td>Sensitivität CTC (pro Polyp)</td>
<td>Spezifität</td>
</tr>
<tr>
<td>Polypen < 6 mm (4): 65 % [57–73]</td>
<td>Polypen < 6 mm: k. A.</td>
<td></td>
</tr>
<tr>
<td>Polypen 6-9 mm (5): 84 % [80–89]</td>
<td>Polypen 6-9 mm: k. A.</td>
<td></td>
</tr>
<tr>
<td>Polypen > 9 mm (6): 88 % [84–93]</td>
<td>Polypen > 9 mm (9): 95 % [94–97]</td>
<td></td>
</tr>
</tbody>
</table>

Heterogenität

- Ergebnisse konsistent, Datenpoolung über alle jeweils verfügbaren Studien hinweg jedoch nicht gerechtfertigt (mit p-Werten zwischen 0,00005 und 0,0162)
- Datenpoolung gerechtfertigt (für Polypen > 9 mm, p = 0,9996)

Bemerkungen

- Berechnung GÖG/ÖBIG.
- Angaben in runder Klammer: Anzahl der gepoolten Studien; Angaben in eckigen Klammern: 95-%-Konfidenzintervall (in %).
- Angegebene Range für die anderen Berechnungsalgorithmen: 65 % bis 80 %.
- Angegebene Range für die anderen Berechnungsalgorithmen: 84 % bis 87 %.
- Angegebene Range für die anderen Berechnungsalgorithmen: 84 % bis 89 %.
- Angegebene Range für die anderen Berechnungsalgorithmen: 85 % bis 88 %.
- Angegebene Range für die anderen Berechnungsalgorithmen: 95 % bis 96 %.
- Gesamtzahl der Polypen: 1.411.
- Angegebene Range für die anderen Berechnungsalgorithmen: 17 % bis 50 %.
- Angegebene Range für die anderen Berechnungsalgorithmen: 45 % bis 63 %.
- Angegebene Range für die anderen Berechnungsalgorithmen: 80 % bis 81 %.

Quelle: Sosna et al. 2003, ÖBIG-FP-eigene Darstellung
8.4.1.2 Primärstudien mit mehr als 500 Patienten

Tabelle 25: Rockey et al. 2005

<table>
<thead>
<tr>
<th>Forschungsfrage(n)/Studienziel(e)</th>
<th>Bewertung der Sensitivität von Doppelkontraströntgen des Dickdarms, CTC und Koloskopie zur Detektion von Polypen und Karzinomen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methodik</td>
<td></td>
</tr>
<tr>
<td>Studiendesign</td>
<td>Prospektiv</td>
</tr>
<tr>
<td>Einschluss-/Ausschlusskriterien</td>
<td>Einschlusskriterien:</td>
</tr>
<tr>
<td></td>
<td>• Ein oder mehrere positive FOBT</td>
</tr>
<tr>
<td></td>
<td>• Ein oder mehrere Episoden von rektalen Blutungen (hellrotes Blut) in den vergangenen drei Monaten</td>
</tr>
<tr>
<td></td>
<td>• Eisenmangelanämie (definiert als Hämaglobin < 130 g/l bei Männern und < 120 g/l bei Frauen bei mindestens einer Labormessung und abnormal niedriges Ferritin, Eisenbindungskapazität oder fehlende Knochenmarkspeicher)</td>
</tr>
<tr>
<td></td>
<td>• Kolonkarzinom oder Adenom bei einem Verwandten ersten Grades vor dem 60. Lebensjahr diagnostiziert oder bei zwei Verwandten ersten Grades, altersunabhängig diagnostiziert.</td>
</tr>
<tr>
<td></td>
<td>Ausschlusskriterien:</td>
</tr>
<tr>
<td></td>
<td>• Aktive gastrointestinal Blutung (beobachtete oder berichtete Hämatemesis, Melaena, wiederholte Hämatochezie)</td>
</tr>
<tr>
<td></td>
<td>• Schwere Erkrankung in den letzten sechs Wochen</td>
</tr>
<tr>
<td></td>
<td>• Schwangerschaft oder keine Verwendung von Empfängnisverhütung bei Frauen in gebärfähigem Alter</td>
</tr>
<tr>
<td></td>
<td>• Frühere Operationen am Kolon</td>
</tr>
<tr>
<td></td>
<td>• Unauffällige Koloskopie in den letzten zwei Jahren</td>
</tr>
<tr>
<td></td>
<td>• Bekannte entzündliche Darmerkrankungen</td>
</tr>
<tr>
<td></td>
<td>• Häftlinge</td>
</tr>
<tr>
<td></td>
<td>• Alter < 18 Jahre</td>
</tr>
<tr>
<td></td>
<td>• Gleichzeitige Teilnahme an Studien, in denen Medikamente, medizinische Geräte oder biologische Interventionen involviert sind</td>
</tr>
<tr>
<td></td>
<td>• Notwendigkeit spezieller Vorsichtsmaßnahmen bei endoskopischen Untersuchungen (z. B. antibiotische Prophylaxe)</td>
</tr>
<tr>
<td></td>
<td>• Gewicht ≥ 136 kg</td>
</tr>
<tr>
<td>Rekrutierung</td>
<td>Vorgesehene Kolonuntersuchung bei Patienten, die mit großer Wahrscheinlichkeit pathologische Veränderungen im Kolon aufweisen</td>
</tr>
<tr>
<td>Verblindung</td>
<td>Studienteilnehmer und Prüfarzte verblindet gegenüber den Ergebnissen der jeweiligen anderen Tests.</td>
</tr>
<tr>
<td></td>
<td>Segmentale Entblindung: Nach der koloskopischen Beurteilung eines Darmsegments wird der Befund der Koloskopie dokumentiert, bevor die Ergebnisse von Doppelkontraströntgen und CTC dargelegt werden; widersprüchliche Ergebnisse werden durch spezifische Überprüfung des betreffenden Segmentes abgeklärt.</td>
</tr>
<tr>
<td></td>
<td>In Fällen, in denen Läsionen < 6 mm bei Doppelkontraströntgen oder CTC gefunden werden, die bei der Koloskopie nicht identifiziert werden können, werden die Ergebnisse der Untersuchungen von einem unabhängigen Komitee noch einmal verblindet geprüft und ggf. auch wiederholt.</td>
</tr>
<tr>
<td>Statistische Analyse</td>
<td>Sensitivität (95 % Konfidenz), Test auf Non-inferiority (CTC/Koloskopie); Test auf Superiority (CTC/Doppelkontraströntgen) Interimsanalysen</td>
</tr>
<tr>
<td>Setting</td>
<td></td>
</tr>
<tr>
<td>Land</td>
<td>USA</td>
</tr>
<tr>
<td>Zentrum</td>
<td>Multicenterstudie (14 Zentren, überwiegend Universitätskliniken)</td>
</tr>
<tr>
<td>(Bei allen Patienten)</td>
<td></td>
</tr>
<tr>
<td>Angewendete Verfahren/-Untersuchungen</td>
<td>Doppelkontraströntgen des Dickdarms; CTC und Koloskopie</td>
</tr>
</tbody>
</table>
Fortsetzung Tabelle 25: Rockey et al. 2005

<table>
<thead>
<tr>
<th>Analysis of air contrast barium enema, computed tomographic colonography, and colonoscopy: prospective comparison²⁸⁶</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnose</td>
</tr>
<tr>
<td>Referenzverfahren</td>
</tr>
<tr>
<td>Untersuchtes Verfahren</td>
</tr>
<tr>
<td>Technische Charakteristika des Gerätes/der Geräte (Auswertungsmodus)</td>
</tr>
<tr>
<td>Lage bei der Untersuchung</td>
</tr>
<tr>
<td>Befundung/Erfahrung der Ärzte</td>
</tr>
<tr>
<td>Untersuchte Personen</td>
</tr>
<tr>
<td>Charakterisierung</td>
</tr>
<tr>
<td>Auftraggeber/Sponsoren</td>
</tr>
</tbody>
</table>
Wesentliche Ergebnisse

<table>
<thead>
<tr>
<th>Verfahrensvergleich</th>
<th>Sensitivität (95% Konfidenzintervall)</th>
<th>Nach Patient</th>
<th>Nach Läsion</th>
<th>Nach Histologie (Adenom oder Krebs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Größe der Läsion ≥ 10 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anzahl</td>
<td>63</td>
<td>76</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>CTC</td>
<td>0,59</td>
<td>0,53<0,0001</td>
<td>0,64<0,0001</td>
<td></td>
</tr>
<tr>
<td>Koloskopie</td>
<td>0,984</td>
<td>0,987</td>
<td>0,982</td>
<td></td>
</tr>
<tr>
<td>(0,45–0,71)</td>
<td>(0,41–0,64)</td>
<td>(0,49–0,77)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0,91–1,00)</td>
<td>(0,93–1,00)</td>
<td>(0,90–1,00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Größe der Läsion 6–9 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anzahl</td>
<td>116</td>
<td>158</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>CTC</td>
<td>0,51</td>
<td>0,47</td>
<td>0,60</td>
<td></td>
</tr>
<tr>
<td>Koloskopie</td>
<td>0,99</td>
<td>0,987</td>
<td>1,00</td>
<td></td>
</tr>
<tr>
<td>(0,41–0,60)</td>
<td>(0,39–0,56)</td>
<td>(0,49–0,70)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0,95–1,00)</td>
<td>(0,96–1,00)</td>
<td>(0,96–1,00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Größe der Läsion ≥ 6 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anzahl</td>
<td>155</td>
<td>234</td>
<td>152</td>
<td></td>
</tr>
<tr>
<td>CTC</td>
<td>0,55</td>
<td>0,49</td>
<td>0,61</td>
<td></td>
</tr>
<tr>
<td>Koloskopie</td>
<td>0,987</td>
<td>0,987</td>
<td>0,993</td>
<td></td>
</tr>
<tr>
<td>(0,47–0,63)</td>
<td>(0,43–0,56)</td>
<td>(0,53–0,69)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0,95–1,00)</td>
<td>(0,96–1,00)</td>
<td>(0,96–1,00)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Spezifität (95% Konfidenzintervall)

- **Größe der Läsion ≥ 10 mm (n = 551)**
 - CTC: 0,96 (0,94–0,98) p < 0,0001
 - Koloskopie: 0,996 (0,99–1,00)

- **Größe der Läsion ≥ 6 mm (n = 459)**
 - CTC: 0,89 (0,86–0,92) p < 0,0001
 - Koloskopie: 0,996 (0,98–1,00)

Andere Ergebnisse

- Ergebnisse der Doppelkontrastdarstellung des Dickdarms sind hier nicht dargestellt.
- Bezüglich der Qualität der Darmvorbereitung (Einteilung in definierte Kategorien) wird kein signifikanter Einfluss auf die Sensitivität der Untersuchungen festgestellt.
- CTC-Befunder mit weniger Vorerfahrung entdecken mehr Läsionen als Befunder mit mehr Vorerfahrung, sowohl bei Läsionen ≥ 10 mm (70% vs. 47%, p = 0,078) als auch bei der Läsionsgröße 6–9 mm (58% vs. 44%, p = 0,144).
- Im CTC werden bei 348 Patienten pathologische Veränderungen außerhalb des Dickdarms entdeckt, wobei der Großteil als klinisch nicht relevant bezeichnet wird (bei zwölf Patienten wird ein abdominelles Aortenaneurisma und bei vier Patienten eine maligne Veränderung angegeben).

Diskussion von Biasformen

Ja

Schlussfolgerung(en) der Autoren

Konventionelle Koloskopie hat die höchste Sensitivität bei der Detektion von Dickdarmpolypen und Dickdarmkrebs.

Quelle: Rockey et al. 2005, ÖBIG-FP-eigene Darstellung
Tab. 26: Cotton et al. 2004

Computed Tomographic Colonography (Virtual Colonoscopy) A Multicenter Comparison With Standard Colonoscopy for Detection of Colorectal Neoplasia

<table>
<thead>
<tr>
<th>Forschungsfrage(n)/ Studienziel(e)</th>
<th>Evaluierung der Sensitivität und Spezifität der CTC in einer großen Anzahl von Patienten in mehreren Zentren</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methodik</td>
<td></td>
</tr>
<tr>
<td>Studiendesign</td>
<td>Prospektiv</td>
</tr>
<tr>
<td>Einschluss-/Ausschlusskriterien</td>
<td>Einschlusskriterien: Personen ab dem 50. Lebensjahr mit klinischer Indikation zur Koloskopie</td>
</tr>
<tr>
<td></td>
<td>Ausschlusskriterien: Patienten, bei denen innerhalb der letzten drei Jahre eine Koloskopie</td>
</tr>
<tr>
<td></td>
<td>durchgeführt worden ist</td>
</tr>
<tr>
<td>Rekrutierung</td>
<td>K. A.</td>
</tr>
<tr>
<td>Verblindung</td>
<td>Endoskopiker waren gegenüber den Ergebnissen der CTC verblindet. Segmentale Entblindung: Nach</td>
</tr>
<tr>
<td></td>
<td>Untersuchung jedes Kolonsegments und Notierung der Befunde wurden die CTC-Befunde für das</td>
</tr>
<tr>
<td></td>
<td>jeweilige Segment offengelegt, um bei Diskrepanzen eine sofortige nochmalige Untersuchung zu</td>
</tr>
<tr>
<td></td>
<td>ermöglichen.</td>
</tr>
<tr>
<td>Statistische Analyse</td>
<td>Primäre Parameter: Sensitivität, Spezifität</td>
</tr>
<tr>
<td></td>
<td>Sekundäre Parameter: PPV, NPV</td>
</tr>
<tr>
<td></td>
<td>Software: SAS Version 8.2 (SAS Institute, Cary, North Carolina) Stichprobengrößenberechnung</td>
</tr>
<tr>
<td></td>
<td>beschrieben</td>
</tr>
<tr>
<td>Setting</td>
<td></td>
</tr>
<tr>
<td>Land</td>
<td>USA (8 Zentren), Großbritannien (1 Zentrum)</td>
</tr>
<tr>
<td>Zentrum</td>
<td>Multicenterstudie (9 Zentren)</td>
</tr>
<tr>
<td>Zeitraum der Untersuchung</td>
<td>April 2000 bis Oktober 2001</td>
</tr>
<tr>
<td>(Bei allen Patienten) angewendete</td>
<td>CTC, danach innerhalb von 2 Stunden konventionelle Koloskopie</td>
</tr>
<tr>
<td>Verfahren/Untersuchungen</td>
<td></td>
</tr>
<tr>
<td>Diagnose</td>
<td></td>
</tr>
<tr>
<td>Referenzverfahren</td>
<td>Initiale Koloskopie und zusätzlich Befunde nach segmentaler Entblindung, sowie (wenn klinisch</td>
</tr>
<tr>
<td></td>
<td>indiziert) zusätzliche diagnostische Untersuchungen zu einem späteren Zeitpunkt.</td>
</tr>
<tr>
<td>Untersuchtes Verfahren</td>
<td>CTC</td>
</tr>
<tr>
<td>Technische Charakteristika des</td>
<td></td>
</tr>
<tr>
<td>Gerätes/der Geräte (Auswertungsmodus)</td>
<td>2-Zeilen- und 4-Zeilen-CT Bildgebung: 2-D und wenn nötig 3-D</td>
</tr>
<tr>
<td></td>
<td>Picker und Siemens-Software (Picker International Inc, Cleveland, Ohio; Siemens Medical</td>
</tr>
<tr>
<td></td>
<td>Solutions, Iselin, New Jersey): Schichtdicke: 2,5 mm Rekonstruktionsinkrement: 1,5 mm</td>
</tr>
<tr>
<td></td>
<td>General Electric (GE Medical Systems, Waukesha, Wisconsin): Schichtdicke: 5,0 mm</td>
</tr>
<tr>
<td></td>
<td>Rekonstruktionsinkrement: 1,0 mm</td>
</tr>
<tr>
<td>Darmvorbereitung</td>
<td>24 Stunden vor der Untersuchung: mindestens 8 Unzen Flüssigkeit jede Stunde, 45 ml Laxans</td>
</tr>
<tr>
<td></td>
<td>(C.B. Fleet Company Inc, Lynchburg, Va) in 8 Unzen kaltem Wasser. Am Tag der Untersuchung:</td>
</tr>
<tr>
<td></td>
<td>45 ml laxativ Einblasen von Raumluft oder Kohlendioxid</td>
</tr>
<tr>
<td>Lage bei der Untersuchung</td>
<td>Bauch- und Rückenlage</td>
</tr>
</tbody>
</table>

Koloskopie: K. A.
Fortsetzung Tabelle 26: Cotton et al. 2004

Computed Tomographic Colonography (Virtual Colonoscopy) A Multicenter Comparison With Standard Colonoscopy for Detection of Colorectal Neoplasia

<table>
<thead>
<tr>
<th>Befundung/Erfahrung der Ärzte</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Untersuchte Personen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl: 615 (603 CTC, 602 Koloskopie, 600 beide Methoden)</td>
</tr>
<tr>
<td>Geschlecht: 45 % Männer, 55 % Frauen</td>
</tr>
<tr>
<td>Alter: ≥ 61 Jahre (≥ 50 Jahre)</td>
</tr>
<tr>
<td>Charakterisierung: Keiner der Patienten war Teilnehmer einer Screeninginitiative</td>
</tr>
<tr>
<td>Auftraggeber/Sponsoren: Förderung vom amerikanischen Verteidigungsministerium (Office of Naval Research)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wesentliche Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verfahrensvergleich</td>
</tr>
<tr>
<td>a) Analyse nach Patient</td>
</tr>
<tr>
<td>Initiale konventionelle Koloskopie</td>
</tr>
<tr>
<td>Tatsächliche Größe der Läsion, mm</td>
</tr>
<tr>
<td>≥ 6</td>
</tr>
<tr>
<td>≥ 10</td>
</tr>
<tr>
<td>6–9</td>
</tr>
<tr>
<td>1–5</td>
</tr>
<tr>
<td>Initiale konventionelle Koloskopie</td>
</tr>
<tr>
<td>Tatsächliche Größe der Läsion, mm</td>
</tr>
<tr>
<td>≥ 6</td>
</tr>
<tr>
<td>≥ 10</td>
</tr>
<tr>
<td>6–9</td>
</tr>
<tr>
<td>1–5</td>
</tr>
<tr>
<td>b) Analyse nach Läsion</td>
</tr>
<tr>
<td>Initiale konventionelle Koloskopie</td>
</tr>
<tr>
<td>Tatsächliche Größe der Läsion, mm</td>
</tr>
<tr>
<td>≥ 6</td>
</tr>
<tr>
<td>≥ 10</td>
</tr>
<tr>
<td>6–9</td>
</tr>
<tr>
<td>1–5</td>
</tr>
</tbody>
</table>

Andere Ergebnisse: „Fly through“, NPV, PPV
Nicht auswertbare Befunde: Angegeben
Komplikationen: Unvollständig angegeben; geringgradige Nebenwirkungen bei 14 Teilnehmern (1 x schwache Blutung nach Polypektomie, 8 Fälle von potenziell klinisch relevanten extrakolischen Läsionen im CTC)
Diskussion von Biasformen: Nein
Schlussfolgerung(en) der Autoren: CTC ist für den allgemeinen Gebrauch noch nicht geeignet. Technik und Ausbildung müssen noch verbessert werden

Quelle: Cotton et al. 2004, ÖBIG-FP-eigene Darstellung
Tabelle 27: Johnson et al. 2003

Prospektive Blinde Evaluation of Computed Tomographic Colonography for Screen Detection of Colorectal Polyps

<table>
<thead>
<tr>
<th>Forschungsfrage(n)/Studienziel(e)</th>
<th>Sensitivität, Spezifität und Übereinstimmung der Befundung bei CTC im Vergleich zu Koloskopie zur Detektion von kolorektalen Polypen bei Patienten mit niedriger Prävalenz</th>
</tr>
</thead>
</table>

Methodik

<table>
<thead>
<tr>
<th>Studiendesign</th>
<th>Prospektiv</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Einschluss-/Ausschlusskriterien</th>
<th>Einschlusskriterien:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patienten ≥ 50 Jahre zur Koloskopie vorgesehen wegen: Erhöhten Risikos, kolorektale Neoplasmen zu entwickeln (kolorektale Neoplasie in der Anamnese, vermehrtes Auftreten von kolorektalem Karzinom in der Familienanamnese), oder plötzlichen Auftretens von Eisenmangelanämie</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ausschlusskriterien:</th>
<th>Melaena</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hämatochezie</td>
</tr>
<tr>
<td></td>
<td>Entzündliche Darmerkrankungen</td>
</tr>
<tr>
<td></td>
<td>Bekannte familiäre Polyposis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rekrutierung</th>
<th>Vorgesehene Koloskopie bei Patienten mit erhöhtem Risiko</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Verblindung</th>
<th>CTC: Radiologen waren verblindet. Befunde wurden nicht nach jeder Interpretation bekannt gegeben. Zuteilung der Fälle zur Interpretation erfolgte zufällig. Die die Koloskopie durchführenden Ärzte waren gegenüber den Befunden der CTC verblindet.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Statistische Analyse</th>
<th>Sensitivität; Spezifität</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-Statistik und 95-%-Konfidenzintervalle zur Berechnung der Übereinstimmung zwischen 2 Radiologen für jeden Patienten. Univariate logistische Regressionsmodelle zur Voraussage von Polypen, die von beiden Radiologen nicht detektiert wurden; odds ratio, risk ratio.</td>
<td></td>
</tr>
<tr>
<td>p = 0,05.</td>
<td>--</td>
</tr>
</tbody>
</table>

Setting

<table>
<thead>
<tr>
<th>Land/Zentrum</th>
<th>USA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zentrum</td>
<td>1 Zentrum: Mayo Clinic, Rochester, Minnesota</td>
</tr>
<tr>
<td>Zeitraum der Untersuchung</td>
<td>Januar 1998-Februar 2001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(Bei allen Patienten) angewendete Verfahren/-Untersuchungen</th>
<th>CTC und Koloskopie am selben Tag</th>
</tr>
</thead>
</table>

Diagnose

<table>
<thead>
<tr>
<th>Referenzverfahren</th>
<th>Koloskopie mit Videaufnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untersuchtes Verfahren</td>
<td>CTC</td>
</tr>
</tbody>
</table>

Fortsetzung Tabelle 27: Johnson et al. 2003

Prospective Blinded Evaluation of Computed Tomographic Colonography for Screen Detection of Colorectal Polyps

| Technische Charakteristika des Geräts/der Geräte (Auswertungsmodus) | CTC:
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>G.E. HiSpeed Advantage (120/703 Patienten) oder Lightspeed (Vier-</td>
</tr>
<tr>
<td>zeillendetektor) (583/703) Spiral-CT (GE Medical Systems, Milwaukee,</td>
</tr>
</tbody>
</table>
| Wisconsin)
| Einzeilen-Spiral-CT: Kollimation: 5 mm
| Tischgeschwindigkeit: 6,5 mm/sec
| Pitch: 1,3
| Rekonstruktionsintervall: 3 mm
| Matrix 512 x 512
| Röhrenstrom: 70 mAs
| Röhrenspannung: 120 kVp
| Mehrzeilen-Spiral-CT:
| Kollimation: 5 mm
| Pitch 15 mm/sec
| Rekonstruktionsintervall: 3 mm
| Röhrenstrom: 80 mAs
| Röhrenspannung: 120 kVp
| Standard-Rekonstruktionsalgorithmus
| Workstation: SUN Microsystems, San José, Kalifornien
| Bildgebung: 2-D, 3-D bei Abnormalität
| Koloskopie: K. A. zum Gerät

| Darmvorbereitung | CTC:
|---------------------|
| Orale Spülung mit GoLyte; Bisacodyl-Tabletten (10 mg) bei 681/703 Patienten
| Magnesium-Citrat (300 ml) und Bisacodyl-Tabletten (20 mg) bei 4/703 Patienten
| Phospho-Soda (90 ml) bei 18/703 Patienten
| 1 mg Glucagon subkutan 10 min vor CTC bei 635 Patienten
| Einblasen von Kohlendioxid bis zur Toleranzgrenze

| Lage bei der Untersuchung | Bauch- und Rückenlage

| Befundung/Erfahrung der Ärzte | CTC:
| 2 bis 3 Radiologen, zertifizierte Fachärzte, mit mehr als 10 Jahren praktischer Erfahrung und über 150 CTC-Interpretationen mit endoskopischer Korrelation
| Koloskopie: erfahrene Gastroenterologen oder kolorektale Chirurgen. K. A. über den Grad der Erfahrung

<table>
<thead>
<tr>
<th>Untersuchte Personen</th>
</tr>
</thead>
</table>
| Anzahl | 703
| Geschlecht | 442 Männer, 261 Frauen
| Alter | Ø 64 (50-84 Jahre)
| Charakterisierung | Nach ethnischer Herkunft
| Auftraggeber/Sponsoren | K. A.

DAHTA@DIMDI
Seite 102 von 164
Fortsetzung Tabelle 27: Johnson et al. 2003

Prospetive Blinded Evaluation of Computed Tomographic Colonography for Screen Detection of Colorectal Polyps

Wesentliche Ergebnisse

a) Sensitivität der CTC auf Patientenbasis

<table>
<thead>
<tr>
<th>Verfahrensvergleich</th>
<th>Pro Patientenanalyse</th>
<th>Sensitivität</th>
<th>Prozentsatz</th>
<th>Spezifität</th>
<th>Prozentsatz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Befunder 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5–9 mm</td>
<td>26/56</td>
<td>46</td>
<td>465/530</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>≥ 10 mm</td>
<td>16/42</td>
<td>38</td>
<td>524/543</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>Befunder 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5–9 mm</td>
<td>15/37</td>
<td>41</td>
<td>333/360</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>≥ 10 mm</td>
<td>8/23</td>
<td>35</td>
<td>367/374</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>Befunder 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5–9 mm</td>
<td>31/45</td>
<td>69</td>
<td>358/378</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>≥ 10 mm</td>
<td>21/29</td>
<td>72</td>
<td>387/394</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>Doppelbefundung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5–9 mm</td>
<td>45/69</td>
<td>65</td>
<td>542/634</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>≥ 10 mm</td>
<td>30/47</td>
<td>64</td>
<td>625/656</td>
<td>95</td>
<td></td>
</tr>
</tbody>
</table>

b) Sensitivität der CTC auf Polypenbasis

<table>
<thead>
<tr>
<th>Jeder Polyp</th>
<th>%</th>
<th>95-%-KI</th>
<th>Adenomatöse Polypen</th>
<th>%</th>
<th>95-%-KI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Befunder 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5–9 mm</td>
<td>28/80</td>
<td>35,0</td>
<td>24,7–46,5</td>
<td>18/41</td>
<td>43,9</td>
</tr>
<tr>
<td>≥ 10 mm</td>
<td>18/53</td>
<td>34,0</td>
<td>21,5–48,3</td>
<td>13/36</td>
<td>36,1</td>
</tr>
<tr>
<td>Befunder 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5–9 mm</td>
<td>13/45</td>
<td>28,9</td>
<td>16,4–44,3</td>
<td>12/30</td>
<td>40,0</td>
</tr>
<tr>
<td>≥ 10 mm</td>
<td>9/28</td>
<td>32,1</td>
<td>15,9–52,4</td>
<td>8/23</td>
<td>34,8</td>
</tr>
<tr>
<td>Befunder 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5–9 mm</td>
<td>36/63</td>
<td>57,1</td>
<td>44,1–69,5</td>
<td>18/31</td>
<td>58,1</td>
</tr>
<tr>
<td>≥ 10 mm</td>
<td>27/37</td>
<td>73,0</td>
<td>55,9–86,2</td>
<td>17/23</td>
<td>73,9</td>
</tr>
<tr>
<td>Doppelbefundung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5–9 mm</td>
<td>51/94</td>
<td>54,3</td>
<td>43,7–64,6</td>
<td>31/51</td>
<td>60,8</td>
</tr>
<tr>
<td>≥ 10 mm</td>
<td>37/59</td>
<td>62,7</td>
<td>49,2–75,0</td>
<td>26/41</td>
<td>63,4</td>
</tr>
</tbody>
</table>

Andere Ergebnisse

Variabilität zwischen Befunden (K-Statistik): −0,67–0,89

Polypendetektion in der CTC in Abhängigkeit von der Morphologie

Nicht auswertbare Befunde

Angegeben: für CTC bei 23 Patienten

Komplikationen

K. A.

Diskussion von Biasformen

Nein

Schlussfolgerung(en) der Autoren

CTC = Computertomografie-Koloskopie. K. A. = keine Angaben. KI = Konfidenzintervall. kVp = Kilovolt Power. mAs = Milliampersekunde. min = Minuten. p = p-Wert. 2-D = Zwei-dimensional. 3-D = Drei-dimensional.
Tabelle 28: Pickhardt et al. 2003 inklusive zwei Folgepublikationen

<table>
<thead>
<tr>
<th>Computer Tomographic Virtual Colonoscopy to Screen for Colorectal Neoplasia in Asymptomatic Adults(^{253})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forschungsfrage(n)/Studienziel(e)</td>
</tr>
<tr>
<td>Methodik</td>
</tr>
<tr>
<td>Studiendesign</td>
</tr>
<tr>
<td>Einschluss-/Ausschlusskriterien</td>
</tr>
<tr>
<td>Einschlusskriterien:</td>
</tr>
<tr>
<td>Erwachsene im Alter zwischen 50 und 79 Jahren mit durchschnittlichem kolorektalen Karzinomrisiko</td>
</tr>
<tr>
<td>Erwachsene im Alter zwischen 40 und 79 Jahren mit kolorektalem Karzinom in der Familienanamnese</td>
</tr>
<tr>
<td>Ausschlusskriterien:</td>
</tr>
<tr>
<td>Positiver Guajakharz-basierter Stuhltest innerhalb von 6 Monaten vor der ärztlichen Überweisung</td>
</tr>
<tr>
<td>Eisenmangelanämie innerhalb der letzten 6 Monate</td>
</tr>
<tr>
<td>Rektale Blutung oder Hämatochezie innerhalb der letzten 12 Monate</td>
</tr>
<tr>
<td>Ungewollter Gewichtsverlust von mehr als 4,5 kg innerhalb der letzten 12 Monate</td>
</tr>
<tr>
<td>Koloskopie innerhalb der letzten 10 Jahre</td>
</tr>
<tr>
<td>Doppellkontraströntgen des Dickdarmes innerhalb der letzten 5 Jahre</td>
</tr>
<tr>
<td>Adenomatöse Polypen, KRK oder entzündliche Darmerkrankungen in der Anamnese</td>
</tr>
<tr>
<td>Fehlendes Einverständnis zur Koloskopie</td>
</tr>
<tr>
<td>Kontraindikation für Natriumphosphatpräparat</td>
</tr>
<tr>
<td>Schwangerschaft</td>
</tr>
<tr>
<td>Rekrutierung</td>
</tr>
<tr>
<td>Statistische Analyse</td>
</tr>
<tr>
<td>Konfidenzintervall: 95 %</td>
</tr>
<tr>
<td>Setting</td>
</tr>
<tr>
<td>Land</td>
</tr>
<tr>
<td>Zentrum</td>
</tr>
<tr>
<td>Zeitraum der Untersuchung</td>
</tr>
<tr>
<td>(Bei allen Patienten) angewendete Verfahren/-Untersuchungen</td>
</tr>
</tbody>
</table>
Fortsetzung Tabelle 28: Pickhardt et al. 2003 inklusive zwei Folgepublikationen

Computed Tomographic Virtual Colonoscopy to Screen for Colorectal Neoplasia in Asymptomatic Adults

<table>
<thead>
<tr>
<th>Diagnose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Referenzverfahren</td>
</tr>
<tr>
<td>Untersuchtes Verfahren</td>
</tr>
</tbody>
</table>

Technische Charakteristika des Geräts/der Geräte (Auswertungsmodus)

- **Gerätytyp Koloskopie:** Olympus Koloskop
- **Gerätytyp CTC:** Mehrschicht-CT (GE LightSpeed oder LightSpeed Ultra, General-Electric-Medical-Systems-4-channel- oder 8-channel-CT-Scanner)
- **Bildgebung:** „Fly through“ und 2-D Scanparameter
- **Technische Charakteristika des Geräts: Kollimation: 1,25–2,5 mm**
- **Technische Charakteristika des Geräts:** Rekonstruktionsintervall: 1 mm
- **Technische Charakteristika des Geräts:** Tischgeschwindigkeit: 15 mm/sec
- **Technische Charakteristika des Geräts:** Röhrenstrom: 100 mAs
- **Technische Charakteristika des Geräts:** Röhrenspannung: 120 kVp
- **Technische Charakteristika des Geräts:** Software: Viatronix V3-D Colon, Version 1.2, Viatronix KM: orales KM

Darmvorbereitung

- **24-Stunden-Darmvorbereitung:** 90 ml Natriumphosphat (Fleet 1 preparation, Fleet pharmaceuticals), 10 mg Bisacodyl, 500 ml Barium (Scan C, Lafayette Pharmaceuticals), 120 ml Diatrizoatmeglumin und Diatrizoatnatrium (Gastrografin, Bracco Diagnostics)
- **CTC:** zusätzliches Einblasen von Raumluft

Lage bei der Untersuchung

- **Rücken- und Bauchlage**

Befundung/Erfahrung der Ärzte

- **Koloskopie:** 17 Ärzte (davon 14 Gastroenterologen und 3 Chirurgen)
- **CTC:** 6 Radiologen (4 befundeten bereits mindestens 25 CTC, 2 mehr als 100 CTC)
- **3-D-Auswertung:** 2-D bei Verdacht auf pathologische Veränderungen

Untersuchte Personen

- **Anzahl:** 1,233
- **Geschlecht:** 728 Männer, 505 Frauen
- **Alter:** Ø 57,8 (von 40 bis 79)

Charakterisierung

- **Asymptomatische Personen; Screeningpopulation mit durchschnittlichem KRK-Risiko (1.201 Erwachsene mit einem durchschnittlichen KRK-Risiko und 32 Erwachsene mit höherem Risiko aufgrund familiärer Vorbelastung).**

Auftraggeber/Sponsoren

- **K. A.**

Wesentliche Ergebnisse

Verfahrensvergleich

<table>
<thead>
<tr>
<th>Polypengröße</th>
<th>CTC</th>
<th>Koloskopie</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 6 mm</td>
<td>149/168 (88,7)</td>
<td>155/168 (92,3)</td>
</tr>
<tr>
<td>≥ 7 mm</td>
<td>100/110 (90,9)</td>
<td>100/110 (90,9)</td>
</tr>
<tr>
<td>≥ 8 mm</td>
<td>77/82 (93,9)</td>
<td>75/82 (91,5)</td>
</tr>
<tr>
<td>≥ 9 mm</td>
<td>53/57 (93,0)</td>
<td>51/57 (89,5)</td>
</tr>
<tr>
<td>≥ 10 mm</td>
<td>45/48 (93,8)</td>
<td>42/48 (87,5)</td>
</tr>
</tbody>
</table>

Leistungsdaten der CTC und Koloskopie bei der Erkennung von Adenomen:

- Die Daten der Koloskopie entsprechen den Daten der ersten Befundung, bevor der Vergleich mit der CTC-Befundung erfolgte.

a) Analyse nach Patient

<table>
<thead>
<tr>
<th>Sensitivität</th>
<th>CTC</th>
<th>Koloskopie</th>
</tr>
</thead>
<tbody>
<tr>
<td>848/1,065 (79,6)</td>
<td>981/1,123 (87,4)</td>
<td>1,061/1,15 (92,2)</td>
</tr>
<tr>
<td>981/1,123 (87,4)</td>
<td>1,061/1,15 (92,2)</td>
<td>1,116/1,17 (94,9)</td>
</tr>
<tr>
<td>1,061/1,15 (92,2)</td>
<td>1,116/1,17 (94,9)</td>
<td>1,138/1,18 (96,0)</td>
</tr>
</tbody>
</table>

b) Analyse nach Polyp

<table>
<thead>
<tr>
<th>Sensitivität</th>
<th>CTC</th>
<th>Koloskopie</th>
</tr>
</thead>
<tbody>
<tr>
<td>180/210 (85,7)</td>
<td>119/133 (89,5)</td>
<td>88/95 (92,6)</td>
</tr>
<tr>
<td>119/133 (89,5)</td>
<td>88/95 (92,6)</td>
<td>56/61 (91,8)</td>
</tr>
<tr>
<td>88/95 (92,6)</td>
<td>56/61 (91,8)</td>
<td>47/51 (92,2)</td>
</tr>
<tr>
<td>189/210 (90,0)</td>
<td>120/133 (90,2)</td>
<td>85/95 (89,5)</td>
</tr>
<tr>
<td>120/133 (90,2)</td>
<td>85/95 (89,5)</td>
<td>55/61 (90,2)</td>
</tr>
<tr>
<td>85/95 (89,5)</td>
<td>55/61 (90,2)</td>
<td>45/51 (88,2)</td>
</tr>
</tbody>
</table>
Fortsetzung Tabelle 28: Pickhardt et al. 2003 inklusive zwei Folgepublikationen

Computed Tomographic Virtual Colonoscopy to Screen for Colorectal Neoplasia in Asymptomatic Adults

Andere Ergebnisse

<table>
<thead>
<tr>
<th>Polypengröße</th>
<th>≤ 5 mm</th>
<th>6-9 mm</th>
<th>≥ 10 mm</th>
<th>Alle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenomatös</td>
<td>344</td>
<td>159</td>
<td>51</td>
<td>554</td>
</tr>
</tbody>
</table>
| Nicht
adenomatös | 622 | 103 | 31 | 756 |

Nicht auswertbare Befunde

Von den insgesamt 1.233 Personen wurden 8 aufgrund unvollständiger Koloskopie ausgeschlossen sowie weitere 12 aufgrund unzureichender Vorbereitung (6 Personen) oder Fehler in der CTC (6 Personen).

Komplikationen

Blutung nach Durchführung einer Polypektomie während der Koloskopie bei 1 Person

Diskussion von Biasformen

K. A.

Schlussfolgerung(en) der Autoren

CTC ist eine genaue Screeningmethode zur Erkennung von kolorektalen Neoplasien in einer asymptomatischen Population und lässt sich vorteilhaft mit der Koloskopie im Hinblick auf die Erkennung von klinisch relevanten Läsionen vergleichen.

Flat Colorectal Lesions in Asymptomatic Adults: Implications for Screening with CT Virtual Colonoscopy

Forschungsfrage(n)/Studienziel(e)

Untersuchung der Häufigkeit, Histologie und Erkennung von flachen Läsionen in einer asymptomatischen Screeningpopulation mittels CTC

Wesentliche Ergebnisse

Verfahrensvergleich

a) Erkennung flacher Polypen ≥ 6 mm:

Von den insgesamt 344 in der Koloskopie entdeckten Polypen ≥ 6 mm wurden 59 als flache Läsion kategorisiert:

- 17 (4,9 %) sowohl bei CTC als auch bei Koloskopie erkannt
- 17 (4,9 %) nur bei der Koloskopie erkannt
- 25 (7,3 %) nur bei CTC erkannt

Durch die CTC wurden 47 (80 %) der insgesamt 59 flachen Läsionen entdeckt. Im Vergleich dazu lag die Sensitivität bei der Erkennung polypoider Läsionen (nicht flach) ≥ 6 mm mittels CTC bei 81 % (231/285, p = 0,86).

Fünf flache Läsionen (8,5 %) wurden bei der Koloskopie erst nach Einsichtnahme in die CTC-Ergebnisse erkannt.

b) Histopathologische Untersuchung:

Adenomatös: Insgesamt 29 (49,2 %) der 59 flachen Läsionen ≥ 6 mm waren adenomatös. 5 dieser Neoplasien befanden sich in einem fortgeschrittenen Stadium im Bezug auf die Größe (n = 3), die Histologie (n = 1) oder auf beides (n = 1). Eine Läsion mit einer flachen Morphologie war maligne. Durch die CTC wurden 24 (82,8 %) der 29 flachen Adenome und 156 (86,2 %) der 181 polypoiden Adenome erkannt. Der Unterschied ist statistisch nicht signifikant (p = 0,58). Nur 4 Patienten (0,3 %) mit flachen Adenomen ≥ 6 mm wiesen in der CTC ein falsch negatives Ergebnis auf.

Nicht adenomatös: Von den 30 nicht adenomatösen flachen Läsionen ≥ 6 mm waren 26 (86,7 %) hyperplastisch. Durch die CTC wurden 23 (76,7 %) der 30 nicht adenomatösen Läsionen erkannt. Acht nicht adenomatöse flache Läsionen waren bei der CTC, der Koloskopie oder bei beiden Untersuchungen ≥ 10 mm. Im Rahmen der CTC wurden 3 nicht adenomatöse Läsionen ≥ 10 mm nicht erkannt.

Von den insgesamt 1.233 CTC wurden in nur 11 Fällen (0,9 %) flache Läsionen ≥ 10 mm identifiziert. 5 dieser 11 Fälle wurden auch in der Koloskopie erkannt. Das ergibt einen positiven prädiktiven Wert von 45,4 % im Vergleich zu 69,2 % (72/104) bei polypoiden Morphologien.

Bei der CTC wurden 148 (15,3 %) der 966 Läsionen ≤ 5 mm als flach eingestuft. Im Rahmen der histopathologischen Untersuchung wurden 41 (27,7 %) als adenomatös und 107 (72,3 %) als nicht adenomatös eingestuft. Von den 26 Läsionen zwischen 6 und 9 mm, die bei der Koloskopie als flach kategorisiert wurden, war keine histologisch fortgeschritten, und 15 (57,7 %) waren nicht adenomatös.
Fortsetzung Tabelle 28: Pickhardt et al. 2003 inklusive zwei Folgepublikationen

Flat Colorectal Lesions in Asymptomatic Adults: Implications for Screening with CT Virtual Colonoscopy

<table>
<thead>
<tr>
<th>Nichst auswertbare Befunde</th>
<th>K. A.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Komplikationen</td>
<td>K. A.</td>
</tr>
<tr>
<td>Diskussion von Biasformen</td>
<td>K. A.</td>
</tr>
</tbody>
</table>

Schlussfolgerung(en) der Autoren

Nonadenomatous Polyps at CT Colonography: Prevalence, Size Distribution, and Detection Rates

Forschungsfrage(n)/Studienziel(e)

Untersuchung der Prävalenz und Größenverteilung von nicht adenomatösen Polypen bei asymptomatischen Erwachsenen und Vergleich der Aufklärungsraten von adenomatösen und nicht adenomatösen Polypen mittels CTC

Wesentliche Ergebnisse

Verfahrensvergleich

Insgesamt wurden bei der Koloskopie bei 622 (50.4 %) der insgesamt 1.233 untersuchten asymptomatischen Personen 1.310 Polypen identifiziert. Bei 511 Polypen, die größer als 5 mm waren, wurden 55 (10,8 %) bei der Koloskopie nicht diagnostiziert. Erst nach Einsicht in die Ergebnisse der CTC wurden die Polypen auch im Rahmen der Koloskopie erkannt.

a) Polypenprävalenz bei 1.233 Patienten nach Größe und Polypentyp:

<table>
<thead>
<tr>
<th>Polypentyp</th>
<th>Polypen ≥ 6 mm</th>
<th>Polypen ≥ 8 mm</th>
<th>Polypen ≥ 10 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nicht adenomatös</td>
<td>109 (8,8)</td>
<td>7,3 (10,6)</td>
<td>54 (4,1)</td>
</tr>
<tr>
<td>Hyperplastisch</td>
<td>82 (6,7)</td>
<td>5,3 (8,2)</td>
<td>32 (2,6)</td>
</tr>
<tr>
<td>Adenomatös</td>
<td>168 (13,6)</td>
<td>11,8 (15,7)</td>
<td>82 (6,7)</td>
</tr>
</tbody>
</table>

b) Sensitivität bei CTC nach Größe und Polypentyp:

<table>
<thead>
<tr>
<th>Polypentyp</th>
<th>Sensitivität (%)</th>
<th>95-%-KI (%)</th>
<th>Sensitivität (%)</th>
<th>95-%-KI (%)</th>
<th>Sensitivität (%)</th>
<th>95-%-KI (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nicht adenomatös</td>
<td>73,1 (98/134)</td>
<td>64,8; 80,4</td>
<td>75,0 (48/64)</td>
<td>62,6; 85,0</td>
<td>73,3 (22/30)</td>
<td>54,1; 87,7</td>
</tr>
<tr>
<td>Hyperplastisch</td>
<td>72,3 (73/101)</td>
<td>62,5; 80,7</td>
<td>76,2 (32/42)</td>
<td>60,5; 87,9</td>
<td>72,2 (13/18)</td>
<td>46,5; 90,3</td>
</tr>
<tr>
<td>Adenomatös</td>
<td>85,7 (180/210)</td>
<td>80,2; 90,1</td>
<td>92,6 (88/95)</td>
<td>85,4; 97,0</td>
<td>92,2 (47/51)</td>
<td>81,1; 97,8</td>
</tr>
</tbody>
</table>

Andere Ergebnisse

Verteilung der während der Koloskopie festgestellten 756 nicht adenomatösen Polypen nach Größe und Histologie

<table>
<thead>
<tr>
<th>Nicht adenomatöse Polypen</th>
<th>Polypen ≤ 5 mm</th>
<th>Polypen ≥ 6 mm</th>
<th>Polypen ≥ 8 mm</th>
<th>Polypen ≥ 10 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperplastische Polypen</td>
<td>334</td>
<td>101</td>
<td>42</td>
<td>18</td>
</tr>
<tr>
<td>(n = 435)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metaplastische Polypen</td>
<td>183</td>
<td>16</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>(n = 199)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andere</td>
<td>105</td>
<td>17</td>
<td>14</td>
<td>11</td>
</tr>
<tr>
<td>(n = 122)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamt</td>
<td>622</td>
<td>134</td>
<td>64</td>
<td>30</td>
</tr>
</tbody>
</table>
Effektivität und Effizienz der CT-Koloskopie im Vergleich zur konventionellen Koloskopie in der Darmkrebsdiagnose und -früherkennung

Fortsetzung Tabelle 28: Pickhardt et al. 2003 inklusive zwei Folgepublikationen

<table>
<thead>
<tr>
<th>Nonadenomatous Polyps at CT Colonography: Prevalence, Size Distribution, and Detection Rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nicht auswertbare Befunde</td>
</tr>
<tr>
<td>Komplikationen</td>
</tr>
<tr>
<td>Diskussion von Biasformen</td>
</tr>
<tr>
<td>Schlussfolgerung(en) der Autoren</td>
</tr>
</tbody>
</table>

1 Die Prävalenz bezieht sich auf die untersuchten Personen und basiert auf den Endergebnissen der Koloskopie nach Offenlegung der Ergebnisse der CTC.
2 Die in Klammer angeführten Daten sind Prozentangaben.
3 Die in Klammer angeführten Daten sind Prozentangaben.
4 Zur Berechnung der Sensitivität wurden die Daten in Klammern herangezogen.
5 p < 0,05 für den Vergleich mit den adenomatösen Daten im selben Polypengrößenbereich.
6 p < 0,01 für den Vergleich mit den adenomatösen Daten im selben Polypengrößenbereich.
7 Die Zahlenangaben entsprechen der Anzahl der Polypen.
8 Die Gesamtzahl der Polypen errechnet sich aus der Summe der Polypen, die kleiner als 5 mm und größer als 6 mm sind.

8.4.2 Primärstudien mit weniger als 500 Patienten

Tabelle 29: MacCarty et al. 2006

<table>
<thead>
<tr>
<th>Occult Colorectal Polyps on CT Colonography: Implications for Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forschungsfrage(n)/ Studienziel(e)</td>
</tr>
<tr>
<td>Methodik</td>
</tr>
<tr>
<td>Studiendesign</td>
</tr>
<tr>
<td>Einschluss-/Ausschlusskriterien</td>
</tr>
<tr>
<td>Mindestens ein Screening in den vorausgegangenen 5 Jahren Ausschlusskriterien:</td>
</tr>
<tr>
<td>K. A.</td>
</tr>
<tr>
<td>Rekrutierung</td>
</tr>
<tr>
<td>Verblindung</td>
</tr>
<tr>
<td>Statistische Analyse</td>
</tr>
<tr>
<td>Setting</td>
</tr>
<tr>
<td>Land</td>
</tr>
<tr>
<td>Zentrum</td>
</tr>
<tr>
<td>Zeitraum der Untersuchung</td>
</tr>
<tr>
<td>(Bei allen Patienten) angewendete Verfahren/-Untersuchungen</td>
</tr>
</tbody>
</table>
Occult Colorectal Polyps on CT Colonography: Implications for Surveillance

<table>
<thead>
<tr>
<th>Diagnose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Referenzverfahren</td>
</tr>
<tr>
<td>Untersuchtes Verfahren</td>
</tr>
<tr>
<td>Technische Charakteristika des Geräts/der Geräte (Auswertungsmodus)</td>
</tr>
<tr>
<td>Koloskopie:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Darmvorbereitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beginnend am Tag vor der Untersuchung: Diät (klare Flüssigkeit), 4 l Polyethylen glycol (GoLYTELY, Braintree Laboratories), 2 x 5 mg Bisacodyl-Tabletten 10 min vor der Untersuchung: 1 mg Glucagon, subkutan Einblasen von CO₂</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lage bei der Untersuchung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bauch- und Rückenlage</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Befundung/Erfahrung der Ärzte</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTC: 1 Radiologe, „board-certified“, der bereits über 1.000 CTC-Scans interpretiert hatte. Wenn Polypen bei CTC nicht gefunden wurden: retrospektive, nicht verblindete Reinterpretation durch 3 Radiologen mit 2-D- und 3-D-Bildgebung; Kategorisierung als: Wahrnehmungsfehler, technischer Fehler, okkuler Polyp</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Untersuchte Personen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl</td>
</tr>
<tr>
<td>Geschlecht</td>
</tr>
<tr>
<td>Alter</td>
</tr>
<tr>
<td>Charakterisierung</td>
</tr>
<tr>
<td>Auftraggeber/Sponsoren</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wesentliche Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verfahrensvergleich</td>
</tr>
</tbody>
</table>

Nicht auswertbare Befunde	K. A.
Komplikationen	K. A.
Diskussion von Biasformen	Ja.
Schlussfolgerung(en) der Autoren	In der CTC sind okkulte Polypen doppelt so häufig Ursache für falsch negative Befunde wie technische Fehler und Wahrnehmungsfehler.

Tabelle 30: Reuterskiöld et al. 2006

Diagnostic Performance of Computed Tomography Colonography in Symptomatic Patients and in Patients with Increased Risk for Colorectal Disease

<table>
<thead>
<tr>
<th>Forschungsfrage(n)/Studienziel(e)</th>
<th>Evaluierung der Leistungsfähigkeit von CTC pro Polyp und Karzinom und pro Patient bei symptomatischen Patienten und solchen, die ein erhöhtes Risiko für kolorektale Neoplasie aufweisen. Untersuchung des Einflusses der Läsionsgröße, des histologischen Typs und der diagnostischen Sicherheit des Untersuchers auf die Resultate. Evaluierung der Fähigkeit, Patienten zu identifizieren, die weitere Behandlungen benötigen.</th>
</tr>
</thead>
</table>

Methodik

<table>
<thead>
<tr>
<th>Studiendesign</th>
<th>Prospektiv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einschluss-/Ausschlusskriterien</td>
<td>Einschlusskriterien: Patienten, die zur Koloskopie an eine endoskopische Spezialabteilung einer Universitätsklinik überwiesen wurden. Ausschlusskriterien: Frauen unter 50 Jahren, Personen mit akuter Kolitis oder Kolostomie</td>
</tr>
<tr>
<td>Rekrutierung</td>
<td>Patienten wurden aufeinanderfolgend von der Warteliste der Klinik rekrutiert; Patienten mit Anämie und/oder rektalen Blutungen erhielten Priorität</td>
</tr>
<tr>
<td>Verblindung</td>
<td>Untersucher interpretierten CTC ohne Kenntnisse der medizinischen Anamnese der Patienten. Studie wird als Untersucher-verblindet beschrieben, k. A. über die Methodik der Verblindung.</td>
</tr>
<tr>
<td>Statistische Analyse</td>
<td>Chi-Quadrat-Test für Trends; Korrelationskoeffizient nach Spearman; 95-%-Konfidenzintervall für Spezifität nach Wilson</td>
</tr>
</tbody>
</table>

Setting

<table>
<thead>
<tr>
<th>Land</th>
<th>Schweden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zentrum</td>
<td>Universitätsklinik</td>
</tr>
<tr>
<td>Zeitraum der Untersuchung</td>
<td>16 Monate (k. A. über genaue Daten)</td>
</tr>
</tbody>
</table>

Diagnose

<table>
<thead>
<tr>
<th>Referenzverfahren</th>
<th>Koloskopie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untersuchtes Verfahren</td>
<td>CTC</td>
</tr>
</tbody>
</table>

Technische Charakteristika des Geräts/der Geräte (Auswertungsmodus)

CTC: Spiral CT (PQS5000; Picker International, Cleveland, Ohio, USA)	CTC: Polyethyleneglykolösung (Laxabon; Tika, Lund, Schweden; n = 106)
Röhrenstrom: 125 mAs, Röhrenspannung: 110 kV, Rekonstruktionsintervall: 2 mm Bildgebung: axiale Bilder, Fensterbreite 1.400 HU, Fensterlevel: –500. 3-D für abnormale Befunde	Phosphatlösung (Phosphoral; Ferring, Oslo, Norwegen; n = 3)
	Sodium-Picosulfat-Lösung (Picosalax; Ferring; n = 1)
	Andere Lösung (n = 1)
	Einblasen von Raumluft
	Spasolytikum: Hyoscine-N-Butylbromid (40 mg; Buscopan; Boehringer Ingelheim; Ingelheim, Deutschland; n = 87)
	Glucagon (1 mg; Glucagon Novo Nordisk, Novo Norisk; Basvaerd, Dänemark; n = 24)

| Koloskopie: Standardendoskop (EC 3830 FK, Pentax, Tokio, Japan; CF 100H oder CF140L, Olympus, Tokio, Japan) |

| (Bei allen Patienten) angewendete Verfahren/-Untersuchungen | Durchführung der CTC und gleich darauffolgend Durchführung der Koloskopie. |

Darmvorbereitung

CTC: Polyethyleneglykolösung (Laxabon; Tika, Lund, Schweden; n = 106)	Phosphatlösung (Phosphoral; Ferring, Oslo, Norwegen; n = 3)
Sodium-Picosulfat-Lösung (Picosalax; Ferring; n = 1)	Andere Lösung (n = 1)
Einblasen von Raumluft	Spasolytikum: Hyoscine-N-Butylbromid (40 mg; Buscopan; Boehringer Ingelheim; Ingelheim, Deutschland; n = 87)
Glucagon (1 mg; Glucagon Novo Nordisk, Novo Norisk; Basvaerd, Dänemark; n = 24)	
Fortsetzung Tabelle 30: Reuterskiöld et al. 2006

<table>
<thead>
<tr>
<th>Lage bei der Untersuchung</th>
<th>Rücken- und Bauchlage; bei einem Patienten nur in Rückenlage</th>
</tr>
</thead>
</table>
| Befundung/Erfahrung der Ärzte | CTC: 1 Befunder, k. A. über Grad der Erfahrung
Koloskopie: erfahrene Endoskopisten; k. A. über Grad der Erfahrung |

Untersuchte Personen

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geschlecht</td>
<td>66 Männer, 45 Frauen</td>
</tr>
<tr>
<td>Alter</td>
<td>Median 66,0 (19 bis 86 Jahre)</td>
</tr>
</tbody>
</table>

Charakterisierung

Symptomatische Patienten und Patienten mit erhöhtem Risiko für kolorektale Neoplasien:
Anämie und/oder rektale Blutungen und/oder positiver FOBT: 48 (43 %)
Verdacht auf Malignität ohne Darmsymptome: 5 (4,5 %)
Befundung mit Barium-Darmspülung: 11 (9,9 %)
Durchfall: 16
Historie von Bauchschmerzen und/oder Divertikulitis: 16
Kontrolle nach Polypektomie: 9
Kontrolle wegen Kolitis: 6

Auftraggeber/Sponsoren

Göteborg Medical Society; Swedish Meidcal Society; King Gustav V Jubilée Clinical Cancer Research Foundation; Health and Medical Care Board, Väastra Gütaland Region

Wesentliche Ergebnisse

Verfahrensvergleich

<table>
<thead>
<tr>
<th>Detektionsraten</th>
<th>Nach Läsion</th>
<th>Nach Patient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Läsiongröße</td>
<td>< 5 mm</td>
<td>5–9 mm</td>
</tr>
<tr>
<td>Alle Läsionen</td>
<td>Gesamt, n 61</td>
<td>24</td>
</tr>
<tr>
<td>Koloskopie</td>
<td>richtig positiv, n 57</td>
<td>19</td>
</tr>
<tr>
<td>CTC</td>
<td>richtig positiv, n 33</td>
<td>18</td>
</tr>
<tr>
<td>CTC Sensitivität</td>
<td>54 %</td>
<td>75 %</td>
</tr>
</tbody>
</table>

Adenom oder Karzinom

<table>
<thead>
<tr>
<th>Detektionsraten</th>
<th>Nach Läsion</th>
<th>Nach Patient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Läsiongröße</td>
<td>< 5 mm</td>
<td>5–9 mm</td>
</tr>
<tr>
<td>Gesamt, n</td>
<td>21</td>
<td>12</td>
</tr>
<tr>
<td>Koloskopie</td>
<td>richtig positiv, n 20</td>
<td>11</td>
</tr>
<tr>
<td>CTC</td>
<td>richtig positiv, n 11</td>
<td>11</td>
</tr>
<tr>
<td>CTC Sensitivität</td>
<td>52 %</td>
<td>92 %</td>
</tr>
</tbody>
</table>

Andere Ergebnisse

Histologische Befunde
Angaben zur diagnostischen Sicherheit
Nicht auswertbare Befunde
Unvollständig beschrieben

Komplikationen

K. A.

Diskussion von Biasformen

Nein

Schlussfolgerung(en) der Autoren

CTC hat eine hohe Sensitivität zur Detektion von kolorektalen Läsionen mit ≥ 5 mm. Die diagnostische Sicherheit steigt mit der Läsionsgröße und ist höher bei Adenomen

- **FOBT** = Fäkaler okkuler Bluttest. **HU** = Hounsfield Unit. **K. A.** = Keine Angabe. **kV** = Kilovolt. **mAs** = Milliamperesekunde.
- **n** = Anzahl. **USA** = United States of America (dt.: Vereinigte Staaten von Amerika). 2-D = Zweidimensional. 3-D = Dreidimensional.
- **Quelle**: Reuterskiöld et al. 2006, ÖBIG-FP-eigene Darstellung
Tabelle 31: Arnesen et al. 2005

Missed Lesions and False-Positive Findings on Computed-Tomographic Colonography: a Controlled Prospective Analysis

<table>
<thead>
<tr>
<th>Forschungsfrage(n)/Studienziel(e)</th>
<th>Analyse der Gründe für falsche Befunde bei CTC</th>
</tr>
</thead>
</table>

Methodik

Studiendesign

Prospektiv

Einschluss-/Ausschlusskriterien

Einschlusskriterien:
- Überweisung zur ambulanten Koloskopie
- ≥ 18 Jahre
- Fähigkeit, eine schriftliche und mündliche Einwilligungserklärung zu geben

Ausschlusskriterien:
- Patienten mit akuten Symptomen
- Operation im Abdomen in jüngster Vergangenheit
- Kolostomie
- Schwangerschaft
- Nichteinhalten des Darmvorbereitungsplans

Rekrutierung

K. A.

Verblindung

Der Untersucher der CTC und der Durchführende der Koloskopie waren gegenüber den Ergebnissen der jeweiligen Untersuchung verblindet. Der Untersucher der CTC war auch gegenüber der Indikation für die Koloskopie verblindet.

Statistische Analyse

Sensitivität, Spezifität, NPV, PPV und Genauigkeit wurden für Patienten mit mindestens einem Polypen per Patient und per Polyp berechnet. 95-%-Konfidenzintervalle wurden für Proportionen berechnet.

Setting

Land: Dänemark
Zentrum: Universitätsklinik; Hillerød Hospital
Zeitraum der Untersuchung (Bei allen Patienten): K. A.
angewendete Verfahren/-Untersuchungen: CTC wurde vor einer konventionellen Koloskopie am selben Tag durchgeführt.

Diagnose

Referenzverfahren: Koloskopie
Untersuchtes Verfahren: CTC

Technische Charakteristika des Geräts/der Geräte

CTC:
- Spiral-CT-Scanner (CT/i, HiSpeed, General Electric Medical Systems)
- Kollimation: 5 mm
- Tischgeschwindigkeit: 6,5 mm/sek
- Rekonstruktionsintervall: 3 mm
- Pitch: 1,3
- Matrix: 512 x 512
- Röhrenstrom: 70 mA
- Röhrenspannung: 120 kVp
- Bildgebung: 2-D, 3-D zur Abklärung
- Workstation: Advantage (General Electric Medical Systems, Frankreich); Software: Advantage Navigator (General Electric Medical Systems, Frankreich)

Koloskopie:
- 165-cm-Videokoloskop (Olympus CF, EVIS MH 553 oder EVIS MD 252 Prozessoren; Olympus Europe Ltd., Hamburg, Deutschland)

Darmvorbereitung

Am Tag vor der Untersuchung: 2 l Polyethylenglykol, 2 x 10 mg Bisacodyl Tabletten
Einblasen von Raumluft bis zur Toleranzgrenze.
20 mg Hyoscinbutylbromid (Buscopan, Boehringer Ingelheim, Ingelheim, Deutschland)

Lage bei der Untersuchung

Bauch- und Rückenlage

Befundung/Erfahrung der Ärzte

Interpretation der CTC: 1 Arzt; nach Trainingsprogramm, das 12 Pilot-CTC (und 12 damit gepaarte auf Video aufgenommene konventionelle Koloskopien) beinhaltete und Supervision an einem Zentrum mit hohen Erfahrungswerten

Koloskopie: durch Spezialisten oder Auszubildende unter Aufsicht von Spezialisten
Missed Lesions and False-Positive Findings on Computed-Tomographic Colonography: a Controlled Prospective Analysis

Untersuchte Personen

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geschlecht</td>
<td>61 Männer, 39 Frauen</td>
</tr>
<tr>
<td>Alter</td>
<td>61 (26 bis 87 Jahre)</td>
</tr>
</tbody>
</table>

Charakterisierung

<table>
<thead>
<tr>
<th>Indikation für Koloskopie</th>
<th>Anzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polypenkontrolle</td>
<td>37</td>
</tr>
<tr>
<td>Kolorektales Karzinom – Nachkontrolle</td>
<td>27</td>
</tr>
<tr>
<td>Rektale Blutung</td>
<td>11</td>
</tr>
<tr>
<td>Änderungen der Darmgewohnheiten</td>
<td>5</td>
</tr>
<tr>
<td>Bauchschmerzen</td>
<td>4</td>
</tr>
<tr>
<td>Verdacht auf Polyp bei Doppelkontraströntgen</td>
<td>2</td>
</tr>
<tr>
<td>Andere</td>
<td>14</td>
</tr>
</tbody>
</table>

Auftraggeber/Sponsoren

- Danish Institute for Health Technology Assessment
- Danish Pharmacists’ Foundation
- E. Willumsen Grant
- Foundation of Frederiksborg County
- Foundation for Hospitals in Region 3
- Mrs. O.B. Nielsen’s Foundation
- SanCop Foundation
- S.C.E. Friis Grant
- Tveergaard Foundation

Wesentliche Ergebnisse

Verfahrensvergleich

<table>
<thead>
<tr>
<th>Diagnostische Leistung der CTC in % (95-%-Konfidenzintervall)</th>
<th>Nach Patient</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>> 0 mm</td>
</tr>
<tr>
<td>Sensitivität</td>
<td>61 (45–76)</td>
</tr>
<tr>
<td>Spezifität</td>
<td>61 (45–76)</td>
</tr>
<tr>
<td>PPV</td>
<td>52 (37–67)</td>
</tr>
<tr>
<td>NPV</td>
<td>69 (55–83)</td>
</tr>
<tr>
<td>Genauigkeit</td>
<td>61 (45–76)</td>
</tr>
</tbody>
</table>

| TP, TN, FP, FN (n) | 25, 36, 23, 16 | 18, 61, 12, 9 | 9, 84, 4, 3 |

<table>
<thead>
<tr>
<th>Nach Polyp</th>
</tr>
</thead>
<tbody>
<tr>
<td>n = 90</td>
</tr>
<tr>
<td>Sensitivität</td>
</tr>
<tr>
<td>PPV</td>
</tr>
<tr>
<td>TP, FP, FN (n)</td>
</tr>
</tbody>
</table>

Andere Ergebnisse

<table>
<thead>
<tr>
<th>Ursache für FN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine Angabe</td>
</tr>
</tbody>
</table>

Diskussion von Biasformen

- Kein Bias angenommen

Schlussfolgerungen der Autoren

FN = False negative (dt.: falsch negativ), **FP** = false positive (dt.: falsch positiv), **K. A.** = Keine Angabe, **KV** = Kilovolt, **kVp** = Kilo-volt Power, **mA** = Milliampere, **MDCT** = Multidetektorcomputertomografie, **NPV** = Negative predictive value (dt.: negativer prädiktiver Wert), **PPV** = Positive predictive value (dt.: positiver prädiktiver Wert), **TN** = true negative (dt.: richtig negativ).

TP = true positive (dt.: richtig positiv), **2-D** = Zweidimensional, **3-D** = Dreidimensional.

Quelle: Arnesen et al. 2005, ÖBIG-FP-eigene Darstellung
Tabelle 32: Iannaccone et al. 2005

Colorectal Polyps: Detection with Low-Dose Multi-Detector Row Helical CT Colonography versus Two Sequential Colonoscopies

Forschungsfragen/\(\text{Studienziele(e)}\)

- Evaluierung der diagnostischen Genauigkeit der Niedrigdosis-CTC bei der Erkennung kolorektaler Polypen durch Vergleich mit 2 Koloskopien und unter Verwendung der zweiten Koloskopie als Referenzstandard.

Methodik

- **Studiendesign**: Prospektiv
- **Einschluss-/Ausschlusskriterien**
 - **Einschlusskriterien**:
 - Screening auf KRK bei durchschnittlichem Risiko
 - KRK in der Familienanamnese
 - Kolorektale Polypen in der Anamnese oder Familienanamnese
 - Abnormes Screeningresultat (positiver Guajakharz-basierter Stuhltest, positives Doppelfüllkontrastmittel im Dickdarm oder positives Ergebnis bei der Sigmoidoskopie)
 - Abklärung einer Hämatochezie
 - Veränderungen der Stuhlgewohnheiten
 - Gewichtsverlust
 - Bauchschmerzen
 - Eisenmangelanämie
 - **Ausschlusskriterien**:
 - Adenomatöse Polyposis oder HNPPC in der Familienanamnese
 - Vorausgegangene kolorektale Operation
 - Mögliche entzündliche Darmerkrankung, akute Divertikulitis oder Darmverschluss
 - Fehlendes Einverständnis zur Koloskopie oder CTC
 - Krankheit oder Beschwerden, die die Darmvorbereitung unmöglich machen
 - Fehlende Einverständniserklärung
 - Schwangerschaft
- **Verblindung**
 - CTC: 3 Radiologen, die keine spezifischen Angaben zur CTC und zu den Ergebnissen der Erstkoloskopie hatten, bewerteten jeden einzelnen Fall getrennt und unabhängig voneinander. Die Ergebnisse wurden von jedem Radiologen unter Verwendung einer geeigneten Workstation und Software dokumentiert, bevor die zweite Koloskopie durchgeführt wurde.
 - **Erstkoloskopie**: Insgesamt 2 Ärzte, die die Ergebnisse des CTC nicht kannten, führten abwechselnd die Erstkoloskopien durch und dokumentierten die Ergebnisse.
 - **Zweitkoloskopie**: Die Zweitkoloskopie wurde jeweils von dem Arzt durchgeführt, der die Erstkoloskopie nicht durchgeführt hatte. Dieser Arzt verschaffte sich vor Durchführung der Zweitkoloskopie Kenntnis über die Ergebnisse der CTC und Erstkoloskopie und führte basierend auf diesen Ergebnissen die Zweitkoloskopie durch.
- **Statistische Analyse**
 - Sensitivität, Spezifität, positiver prädiktiver Wert, negativer prädiktiver Wert; K-Statistik
 - SPSS for Windows, Version 11.0.0 (SPPS, Chicago, Illinois)
- **Setting**
 - **Land**: Italien
 - **Zentrum**: Universitätsklinik
 - **Zeitraum der Untersuchung**: November 2002 bis Dezember 2003
 - **(Bei allen Patienten) angewendete Verfahren/-Untersuchungen**: Eingangs-CTC und 3 bis 6 Stunden später Durchführung der Erstkoloskopie; die zweite Koloskopie erfolgte 7 bis 14 Tage (\(\bar{\theta} 9,2\) Tage) später.
Fortsetzung Tabelle 32: Iannaccone et al. 2005

<table>
<thead>
<tr>
<th>Colorectal Polyps: Detection with Low-Dose Multi-Detector Row Helical CT Colonography versus Two Sequential Colonoscopies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnose</td>
</tr>
<tr>
<td>Untersuchtes Verfahren</td>
</tr>
<tr>
<td>Technische Charakteristika des Gerätes/der Geräte (Auswertungsmodus)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Darmvorbereitung</td>
</tr>
<tr>
<td>Lage bei der Untersuchung</td>
</tr>
<tr>
<td>Befundung/Erfahrung der Ärzte</td>
</tr>
<tr>
<td>Untersuchte Personen</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Charakterisierung</td>
</tr>
<tr>
<td>Auftraggeber/Sponsoren</td>
</tr>
</tbody>
</table>
Wesentliche Ergebnisse

a) Sensitivität der CTC (für 3 Befunder) und Erstkoloskopie bei der Polypendetektion:

Die CTC ergab eine durchschnittliche Sensitivität von 62 % für alle 3 Befunder ([60 + 59 + 56]/[94 + 94 + 94]) und eine durchschnittliche Sensitivität für die Erkennung neoplastischer Polypen von 62 % ([26 + 25 + 22]/[39 + 39 + 39]). Bei der Erkennung von Polypen ≥ 6 mm ergibt sich eine durchschnittliche Sensitivität von 86 % sowie 78 % Sensitivität bei neoplastischen Polypen. Alle 11 neoplastischen Polypen ≥ 8 mm wurden von allen 3 Befundern erkannt (Sensitivität: 100 %).

<table>
<thead>
<tr>
<th>Polypengröße</th>
<th>Befunder 1</th>
<th>Befunder 2</th>
<th>Befunder 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 5 mm</td>
<td>51 (29/57)</td>
<td>47 (27/57)</td>
<td>42 (24/57)</td>
</tr>
<tr>
<td>≥ 6 mm</td>
<td>84 (31/37)</td>
<td>86 (32/37)</td>
<td>86 (32/37)</td>
</tr>
<tr>
<td>≥ 7 mm</td>
<td>88 (23/26)</td>
<td>88 (23/26)</td>
<td>88 (23/26)</td>
</tr>
<tr>
<td>≥ 8 mm</td>
<td>94 (17/18)</td>
<td>94 (17/18)</td>
<td>94 (17/18)</td>
</tr>
<tr>
<td>≥ 9 mm</td>
<td>100 (14/14)</td>
<td>100 (14/14)</td>
<td>100 (14/14)</td>
</tr>
<tr>
<td>≥ 10 mm</td>
<td>100 (11/11)</td>
<td>100 (11/11)</td>
<td>100 (11/11)</td>
</tr>
<tr>
<td>Gesamt</td>
<td>64 (60/94)</td>
<td>63 (59/94)</td>
<td>60 (56/94)</td>
</tr>
</tbody>
</table>

Erstkoloskopie

<table>
<thead>
<tr>
<th>Polypengröße</th>
<th>Befunder 1</th>
<th>Befunder 2</th>
<th>Befunder 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 5 mm</td>
<td>82 (47/57)</td>
<td>84 (31/37)</td>
<td>83 (15/18)</td>
</tr>
<tr>
<td>≥ 6 mm</td>
<td>84 (31/37)</td>
<td>85 (22/26)</td>
<td>83 (15/18)</td>
</tr>
<tr>
<td>≥ 7 mm</td>
<td>85 (22/26)</td>
<td>83 (15/18)</td>
<td>82 (9/11)</td>
</tr>
<tr>
<td>≥ 8 mm</td>
<td>86 (12/14)</td>
<td>86 (12/14)</td>
<td>89 (8/9)</td>
</tr>
<tr>
<td>≥ 9 mm</td>
<td>91 (10/11)</td>
<td>91 (10/11)</td>
<td>86 (6/7)</td>
</tr>
<tr>
<td>≥ 10 mm</td>
<td>83 (78/94)</td>
<td>83 (78/94)</td>
<td>87 (54/39)</td>
</tr>
</tbody>
</table>

Verfahrensvergleich

<table>
<thead>
<tr>
<th>Polypengröße</th>
<th>Befunder 1</th>
<th>Befunder 2</th>
<th>Befunder 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 5 mm</td>
<td>50 (9/18)</td>
<td>44 (8/18)</td>
<td>39 (7/18)</td>
</tr>
<tr>
<td>≥ 6 mm</td>
<td>81 (17/21)</td>
<td>81 (17/21)</td>
<td>71 (15/21)</td>
</tr>
<tr>
<td>≥ 7 mm</td>
<td>93 (14/15)</td>
<td>93 (14/15)</td>
<td>80 (12/15)</td>
</tr>
<tr>
<td>≥ 8 mm</td>
<td>100 (11/11)</td>
<td>100 (11/11)</td>
<td>100 (11/11)</td>
</tr>
<tr>
<td>≥ 9 mm</td>
<td>100 (9/9)</td>
<td>100 (9/9)</td>
<td>100 (9/9)</td>
</tr>
<tr>
<td>≥ 10 mm</td>
<td>100 (7/7)</td>
<td>100 (7/7)</td>
<td>100 (7/7)</td>
</tr>
</tbody>
</table>

Sensitivität, neoplastische Polypen

<table>
<thead>
<tr>
<th>Polypengröße</th>
<th>Befunder 1</th>
<th>Befunder 2</th>
<th>Befunder 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 5 mm</td>
<td>46 (29/57)</td>
<td>42 (24/57)</td>
<td>40 (23/57)</td>
</tr>
<tr>
<td>≥ 6 mm</td>
<td>84 (31/37)</td>
<td>86 (32/37)</td>
<td>86 (32/37)</td>
</tr>
<tr>
<td>≥ 7 mm</td>
<td>88 (23/26)</td>
<td>88 (23/26)</td>
<td>88 (23/26)</td>
</tr>
<tr>
<td>≥ 8 mm</td>
<td>94 (17/18)</td>
<td>94 (17/18)</td>
<td>94 (17/18)</td>
</tr>
<tr>
<td>≥ 9 mm</td>
<td>100 (14/14)</td>
<td>100 (14/14)</td>
<td>100 (14/14)</td>
</tr>
<tr>
<td>≥ 10 mm</td>
<td>100 (11/11)</td>
<td>100 (11/11)</td>
<td>100 (11/11)</td>
</tr>
</tbody>
</table>

Sensitivität, alle Polypen

<table>
<thead>
<tr>
<th>Polypengröße</th>
<th>Befunder 1</th>
<th>Befunder 2</th>
<th>Befunder 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 5 mm</td>
<td>82 (47/57)</td>
<td>84 (31/37)</td>
<td>83 (15/18)</td>
</tr>
<tr>
<td>≥ 6 mm</td>
<td>84 (31/37)</td>
<td>85 (22/26)</td>
<td>83 (15/18)</td>
</tr>
<tr>
<td>≥ 7 mm</td>
<td>85 (22/26)</td>
<td>83 (15/18)</td>
<td>82 (9/11)</td>
</tr>
<tr>
<td>≥ 8 mm</td>
<td>86 (12/14)</td>
<td>86 (12/14)</td>
<td>89 (8/9)</td>
</tr>
<tr>
<td>≥ 9 mm</td>
<td>91 (10/11)</td>
<td>91 (10/11)</td>
<td>86 (6/7)</td>
</tr>
<tr>
<td>≥ 10 mm</td>
<td>83 (78/94)</td>
<td>83 (78/94)</td>
<td>87 (54/39)</td>
</tr>
</tbody>
</table>

Sensitivität, neoplastische Polypen

<table>
<thead>
<tr>
<th>Polypengröße</th>
<th>Befunder 1</th>
<th>Befunder 2</th>
<th>Befunder 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 5 mm</td>
<td>50 (9/18)</td>
<td>44 (8/18)</td>
<td>39 (7/18)</td>
</tr>
<tr>
<td>≥ 6 mm</td>
<td>81 (17/21)</td>
<td>81 (17/21)</td>
<td>71 (15/21)</td>
</tr>
<tr>
<td>≥ 7 mm</td>
<td>93 (14/15)</td>
<td>93 (14/15)</td>
<td>80 (12/15)</td>
</tr>
<tr>
<td>≥ 8 mm</td>
<td>100 (11/11)</td>
<td>100 (11/11)</td>
<td>100 (11/11)</td>
</tr>
<tr>
<td>≥ 9 mm</td>
<td>100 (9/9)</td>
<td>100 (9/9)</td>
<td>100 (9/9)</td>
</tr>
<tr>
<td>≥ 10 mm</td>
<td>100 (7/7)</td>
<td>100 (7/7)</td>
<td>100 (7/7)</td>
</tr>
</tbody>
</table>
Wesentliche Ergebnisse

Verfahrensvergleich

Verfahrensvergleich: Leistungsdaten für die CTC und Erstkoloskopie bei der Identifizierung von Patienten mit kolorektalen Polypen:

- Die durchschnittlichen Werte der CTC (für alle 3 Befunder) betragen für die Sensitivität 80 %, für die Spezifität 75 %, für den positiven prädiktiven Wert 78 % und für den negativen prädiktiven Wert 78 %.

<table>
<thead>
<tr>
<th>Fachgruppe</th>
<th>Angaben in %</th>
<th>95 %-Konfidenzintervall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alle Polypen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensitivität</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Befunder 1</td>
<td>83 (38/38 + 8)</td>
<td>69 %, 91 %</td>
</tr>
<tr>
<td>Befunder 2</td>
<td>80 (37/37 + 9)</td>
<td>67 %, 89 %</td>
</tr>
<tr>
<td>Befunder 3</td>
<td>78 (36/36 + 10)</td>
<td>64 %, 88 %</td>
</tr>
<tr>
<td>Erstkoloskopie</td>
<td>94 (43/43 + 3)</td>
<td>83 %, 98 %</td>
</tr>
<tr>
<td>Spezifität</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Befunder 1</td>
<td>76 (32/32 + 10)</td>
<td>62 %, 87 %</td>
</tr>
<tr>
<td>Befunder 2</td>
<td>76 (32/32 + 10)</td>
<td>62 %, 87 %</td>
</tr>
<tr>
<td>Befunder 3</td>
<td>71 (30/30 + 12)</td>
<td>56 %, 83 %</td>
</tr>
<tr>
<td>Erstkoloskopie</td>
<td>100 (42/42)</td>
<td>92 %, 100 %</td>
</tr>
<tr>
<td>Positiver prädiktiver Wert</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Befunder 1</td>
<td>79 (38/38 + 10)</td>
<td>66 %, 88 %</td>
</tr>
<tr>
<td>Befunder 2</td>
<td>79 (37/37 + 10)</td>
<td>65 %, 88 %</td>
</tr>
<tr>
<td>Befunder 3</td>
<td>75 (36/36 + 12)</td>
<td>61 %, 85 %</td>
</tr>
<tr>
<td>Erstkoloskopie</td>
<td>100 (43/43)</td>
<td>92 %, 100 %</td>
</tr>
<tr>
<td>Negativer prädiktiver Wert</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Befunder 1</td>
<td>80 (32/32 + 8)</td>
<td>65 %, 90 %</td>
</tr>
<tr>
<td>Befunder 2</td>
<td>78 (32/32 + 9)</td>
<td>63 %, 88 %</td>
</tr>
<tr>
<td>Befunder 3</td>
<td>75 (30/30 + 10)</td>
<td>60 %, 86 %</td>
</tr>
<tr>
<td>Erstkoloskopie</td>
<td>93 (42/42 + 3)</td>
<td>82 %, 98 %</td>
</tr>
</tbody>
</table>

Andere Ergebnisse

- **Übereinstimmung zwischen den Befunden betreffend Polypendetektion und Patientenidentifikation**

<table>
<thead>
<tr>
<th>Übereinstimmungsanalyse</th>
<th>Befunder 1 vs. Befunder 2</th>
<th>Befunder 2 vs. Befunder 3</th>
<th>Befunder 1 vs. Befunder 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pro Polyp</td>
<td>0,63</td>
<td>0,59</td>
<td>0,51</td>
</tr>
<tr>
<td>Pro Patient</td>
<td>0,79</td>
<td>0,79</td>
<td>0,81</td>
</tr>
</tbody>
</table>

- **Polypenverteilung nach Größe und Histologie**

<table>
<thead>
<tr>
<th>Polypengröße</th>
<th>Neoplastische</th>
<th>Nicht neoplastische</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 5 mm</td>
<td>18</td>
<td>39</td>
<td>57</td>
</tr>
<tr>
<td>6–9 mm</td>
<td>14</td>
<td>12</td>
<td>26</td>
</tr>
<tr>
<td>≥ 10 mm</td>
<td>7</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>Gesamt</td>
<td>39</td>
<td>55</td>
<td>94</td>
</tr>
</tbody>
</table>

- **Nicht auswertbare Befunde**

Komplikationen

K. A.

Diskussion von Biasformen

K. A.

Schlussfolgerung(en) der Autoren

Die Niedrigdosis-CTC ist im Vergleich zur Koloskopie bei der Erkennung von kolorektalen Polypen ≥ 6 mm als vorteilhaft zu bewerten, weist aber bei der Ermittlung von Polypen ≤ 5 mm eine merklich geringere Leistung auf.

1 Beinhalten positive Ergebnisse beim Guajakharz-basierten Stuhltest (n = 4), beim Doppelkontraströntgen (n = 1) sowie bei der Sigmoidoskopie (n = 1).
2 Daten in Prozent. Bei den Angaben zur Sensitivität sind die Daten, die zur Kalkulation herangezogen wurden, in Klammern angegeben. Jedes Konfidenzintervall (95 %) bezieht sich direkt auf den vorangehenden Sensitivitätswert. Die Daten zur Sensitivität werden für die Polypen gesamt (Summe neoplastische und nicht neoplastische Polypen) und nur für neoplastische Polypen angegeben.
3 Die der Berechnung zugrunde liegenden Werte sind in Klammern angegeben.
4 Werte der K-Statistik.
5 Anzahl der Polypen.

Tabelle 33: Park et al. 2005

<table>
<thead>
<tr>
<th>False-Negative Results at Multi-Detector Row CT Colonography: Multivariate Analysis of Causes for Missed Lesions[^248]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forschungsfrage(n)/Studienziel(e)</td>
</tr>
<tr>
<td>Methodik</td>
</tr>
<tr>
<td>Studiendesign</td>
</tr>
<tr>
<td>Einschluss-/Ausschlusskriterien</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Rekrutierung</td>
</tr>
<tr>
<td>Verblindung</td>
</tr>
<tr>
<td>Statistische Analyse</td>
</tr>
<tr>
<td>Setting</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Diagnose</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Technische Charakteristika des Geräts/der Geräte (Auswertungsmodus)</td>
</tr>
<tr>
<td>Koloskopie: Standard Videokoloskop (CF Series; Olympus Optical, Tokio, Japan)</td>
</tr>
</tbody>
</table>
Effektivität und Effizienz der CT-Koloskopie im Vergleich zur konventionellen Koloskopie in der Darmkrebsdiagnose und -früherkennung

Fortsetzung Tabelle 33: Park et al. 2005

<table>
<thead>
<tr>
<th>False-Negative Results at Multi-Detector Row CT Colonography: Multivariate Analysis of Causes for Missed Lesions</th>
</tr>
</thead>
</table>
| **Darmvorbereitung** | Diät: ballaststoffarme Diät
Am Abend vor der Untersuchung: Magnesiumkarbonat Präparat (Magcorol Soln; Taejoon Pharmaceutical, Seoul, Korea); 10 mg Bisacodyl (Dulcolax; Boehringer Ingelheim, Seoul, Korea)
20 mg Scopolamin-N-Butylbromid (Buscopan; Boehringer Ingelheim) i. m.
sofern keine Kontraindikation (Glaukom, Arrhythmie, Miktionsstörungen)
Einblasen von Raumluft zur Toleranzgrenze (⊙: 2.000 ml)
Intravenöse Kontrastmittelgabe für die CTC |
| **Lage bei der Untersuchung** | Bauch- und Rückenlage |
| **Befundung/Erfahrung der Ärzte** | CTC: 2 „board-certified“ gastrointestinale Radiologen mit 5 bzw. 7 Jahren Erfahrung in gastrointestinaler Radiologie und Interpretation von mehr als 50 CTC.
Koloskopie: 1 „board-certified“ Gastroenterologe, der bereits mehr als 1.000 Untersuchungen durchgeführt hat |

Untersuchte Personen

- **Anzahl**: 56
- **Geschlecht**: 31 Männer, 25 Frauen
- **Alter**: Männer: ∅ 60,2 (39-77 Jahre); Frauen: ∅ 56,8 (31-81 Jahre)

Charakterisierung Patienten mit Verdacht auf Kolonkarzinom bzw. bei denen ein Karzinom diagnostiziert wurde

Auftraggeber/Sponsoren: K. A.

Wesentliche Ergebnisse

- **Verfahrensvergleich**: Insgesamt 63 Läsionen, davon 63 Polypen bei 28 Patienten.
 Sensitivität für Polypen ≥ 10 mm / ≥ 8 mm / ≥ 6 mm:
 75 % (95%-Konfidenzintervall: 48–100 %)/77 % (95%-Konfidenzintervall: 52–100 %)/79 % (95%-Konfidenzintervall: 65–93 %)
 Patientenbezogene Spezifität: 73 % (54–87 %)

- **Andere Ergebnisse**: Logistische Regression zur Identifizierung der Ursachen für falsch negative Befunde zeigt nur die Läsionsgröße (Grenzwert: 5 mm) als signifikanten Parameter

- **Nicht auswertbare Befunde**: Beschrieben

- **Komplikationen**: K. A.

- **Diskussion von Biasformen**: Nein

- **Schlussfolgerungen der Autoren**: Flache Läsionen und kleine Polypen sind (abgesehen von inadäquater Darmvorbereitung und Darmdistension) Hauptursachen für falsch negative Befunde im Mehrzeilen-CTC

CT = Computertomografie. CTC = Computertomografie-Koloskopie. K. A. = keine Angaben. kV = Kilovolt. KRK = Kolorektales Karzinom. mAs= Milliamperesekunde. p = p-Wert. 2-D = Zweidimensional. 3-D = Dreidimensional.
Quelle: Park et al. 2005, ÖBIG-FP-eigene Darstellung

Tabelle 34: Wessling et al. 2005

<table>
<thead>
<tr>
<th>Virtual colonography: Identification and differentiation of colorectal lesions using multi-detector computed tomography</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forschungsfrage(n)/Studienziel(e)</td>
</tr>
<tr>
<td>Methodik</td>
</tr>
<tr>
<td>Studiendesign</td>
</tr>
</tbody>
</table>
| **Einschluss-/ Ausschlusskriterien** | Einschlusskriterien:
- Alter > 50 Jahre
- Schriftliche Einverständniserklärung
Ausschlusskriterien:
- Alter < 50 Jahre
- KRK in der Familienanamnese
- Entzündliche Darmerkrankungen in der Anamnese
- Kontraindikation für Butylscopolamin |

Quelle: Wessling et al. 2005, ÖBIG-FP-eigene Darstellung
Fortsetzung Tabelle 34: Wessling et al. 2005

| Virtual colonography: Identification and differentiation of colorectal lesions using multi-detector computed tomography |
|---|---|
| **Rekrutierung** | K. A. |
| **Verblindung** | CTC: Radiologen waren verblindet. Koloskopie: Gastroenterologen waren gegenüber den CTC-Befunden verblindet. |
| **Statistische Analyse** | Sensitivität, Spezifität, negativer prädiktiver Wert, positiver prädiktiver Wert |

Setting

Land	Deutschland
Zentrum	Universitätsklinik Münster
Zeitraum der Untersuchung	Januar 2000-Juni 2003
(Bei allen Patienten) angewendete Verfahren/-Untersuchungen	CTC unmittelbar vor Koloskopie

Diagnose

| Referenzverfahren | Koloskopie |
| Untersuchtes Verfahren | CTC |

| Technische Charakteristika des Geräts/der Geräte (Auswertungsmodus) | CTC: „4-row-Detector“-CT-Sanner (Somatom VolumeZoom; Siemens Medical Solutions, Forchheim, Deutschland) Röhrenrotation: 0,5 sek Detektorkonfiguration: 4 x 1 mm Tischvorschub: 5 mm/Rotation Röhrenstrom: 140 mAs Röhrenspannung: 120 kV Rekonstruktionsintervall: 0,6 mm Schichtdicke: 1,25 mm Matrix: 512 x 512 Bildgebung: 2-D und 3-D Workstation: Vitrea 1.1; Vital Images Inc., Plymouth, Minnesota, USA) | Koloskopie: Standardendoskop (Olympus CF-130I) und Olympus-Exera-CV-160-Prozessorsystem (Olympus Optical Co. Ltd., Tokio, Japan) |

Darmvorbereitung	Am Tag vor der Untersuchung: Diät: klare Flüssigkeit; 4 l Polyethylenglykol Butylscopolamin (Buscopan, Boehringer Ingelheim, Deutschland) intravenös Einblasen von Raumluft bis zur Toleranzgrenze
Lage bei der Untersuchung	Bauch- und Rückenlage
Befundung/Erfahrung der Ärzte	CTC: 2 zertifizierte Radiologen, die mindestens 40 CTC interpretiert haben Koloskopie: 2 Gastroenterologen mit mehr als 6 Jahren Erfahrung in Endoskopie

Untersuchte Personen

Anzahl	78
Geschlecht	42 Männer, 36 Frauen
Alter	Ø 60,7
Charakterisierung	Symptomfrei, niedriges Risiko: 65 Patienten Symptomatische Patienten: 13 Patienten (Hämatochezie, Bauchschmerzen, Gewichtsverlust)
Auftraggeber/Sponsoren	K. A.
Fortsetzung Tabelle 34:: Wessling et al. 2005

Virtual colonography: Identification and differentiation of colorectal lesions using multi-detector computed tomography

<table>
<thead>
<tr>
<th>Verfahrensvergleich</th>
<th>Angaben: Polypenanzahl (in Klammern Patientenanzahl); Sensitivität, Spezifität: Angaben in % (in Klammern 95 % Konfidenzintervall)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polypen bzw. Krebs</td>
<td>Gesamtanzahl</td>
</tr>
<tr>
<td>Alle Größen</td>
<td>49</td>
</tr>
<tr>
<td>≥ 10 mm</td>
<td>7</td>
</tr>
<tr>
<td>6–9 mm</td>
<td>16</td>
</tr>
<tr>
<td>≤ 5 mm</td>
<td>26</td>
</tr>
</tbody>
</table>

Verfahrensvergleich

Krebs 3 3 0 0 100 % 100 %

Andere Ergebnisse

Negativer prädiktiver Wert der CTC: 83 %
Positiver prädiktiver Wert: 88 % (≥ 10 mm), 81 % (6–9 mm), 66 % (≤ 5 mm)

Nicht auswertbare Befunde

Beschrieben (aufgegliedert nach Segmenten); nicht in Auswertung eingeschlossen

Komplikationen

K. A.

Diskussion von Biasformen

Nein

Schlussfolgerung(en) der Autoren

Polypen mit über 5 mm Durchmesser werden verlässlich entdeckt, bei kleineren Polypen ist auch die Spezifität schlecht.

Colonic surveillance by CT colonography using axial images only

<table>
<thead>
<tr>
<th>Forschungsfrage(n)/ Studienziel(e)</th>
<th>Evaluierung der Wirksamkeit von 2-D-axialer CTC als Kontrolluntersuchung bei Patienten mit erhöhtem Risiko für Kolonneoplasmen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methodik</td>
<td>Prospektiv</td>
</tr>
<tr>
<td>Einschluss-/Ausschlusskriterien</td>
<td>Einschlusskriterien: Kontrolluntersuchung nach Polypektomie, Zustand nach Kolonkarzinom, stark erhöhtes familiäres Risiko für Dickdarmkrebs</td>
</tr>
<tr>
<td></td>
<td>Ausschlusskriterien: K. A.</td>
</tr>
<tr>
<td>Rekrutierung</td>
<td>K. A.</td>
</tr>
<tr>
<td>Verblindung</td>
<td>K. A.</td>
</tr>
<tr>
<td>Statistische Analyse</td>
<td>Sensitivität, Spezifität.</td>
</tr>
</tbody>
</table>

Setting

Land	Irland
	1 Zentrum (Mater Misericordiae Hospital)
Zeitraum der Untersuchung	K. A.
(Bei allen Patienten) angewendete Verfahren/-Untersuchungen	CTC, gefolgt von konventioneller Koloskopie am selben Tag
Fortsetzung Tabelle 35: Bruzzi et al. 2004

<table>
<thead>
<tr>
<th>Diagnose</th>
<th>Koloskopie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Referenzverfahren</td>
<td>Koloskopie</td>
</tr>
<tr>
<td>Untersuchtes Verfahren</td>
<td>2-D-axiale CTC</td>
</tr>
<tr>
<td>Technische Charakteristika des Geräts/der Geräte (Auswertungsmodus)</td>
<td>Geräteart CTC: 4-Ring-Multidetector CT-Scanner (4 Plus VolumeZoom, Siemens, Erlangen, Germany)</td>
</tr>
<tr>
<td></td>
<td>Röhrenstrom: 100mAs</td>
</tr>
<tr>
<td></td>
<td>Röhrenspannung: 120 kVp</td>
</tr>
<tr>
<td></td>
<td>Kollimation: 4 x 2,5 mm</td>
</tr>
<tr>
<td></td>
<td>Tischvorschub: 12,5 mm</td>
</tr>
<tr>
<td></td>
<td>Pitch: 1,25</td>
</tr>
<tr>
<td></td>
<td>Scanrekonstruktion: Schnittdicke 3 mm, Intervall: 1,5 mm</td>
</tr>
<tr>
<td></td>
<td>Bildgebung: 2-D axial</td>
</tr>
<tr>
<td>Koloskopie: k. A.</td>
<td>Koloskopie: k. A.</td>
</tr>
</tbody>
</table>

| Lage bei der Untersuchung | Rücken- und Bauchlage |

Untersuchte Personen

Anzahl	82
Geschlecht	39 Männer, 43 Frauen
Alter	Ø 57 (von 26 bis 81 Jahre)
Charakterisierung	Patienten, die nach Polypektomie Kontrolluntersuchungen benötigten (n = 34) Kolonkarzinom in der Anamnese (n = 7) Wiederholtes Kolonkarzinom in der Familienanamnese (n = 41)
Auftraggeber/Sponsoren	K. A.

Wesentliche Ergebnisse

<table>
<thead>
<tr>
<th>Verfahrensvergleich</th>
<th>CTC-Ergebnisse bei insgesamt 52 Polypen (Angaben in %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polypen-größe</td>
<td>Sensitivität pro Polyp</td>
</tr>
<tr>
<td>> 9 mm</td>
<td>100</td>
</tr>
<tr>
<td>6–9 mm</td>
<td>33</td>
</tr>
<tr>
<td>< 6 mm</td>
<td>19</td>
</tr>
<tr>
<td>Nicht auswertbare Befunde</td>
<td>Angegeben</td>
</tr>
<tr>
<td>Komplikationen</td>
<td>K. A.</td>
</tr>
<tr>
<td>Diskussion von Biasformen</td>
<td>Nein</td>
</tr>
<tr>
<td>Schlussfolgerung(en) der Autoren</td>
<td>Die Verwendung von 2-D-axialen Bildern zur Befundung von CTC zeigt eine hohe Sensitivität und Spezifität bei Läsionen mit einer Größe von über 10 mm und wird zur Kontrolle von Patienten mit erhöhtem Risiko für Dickdarmkrebs als geeignet angesehen.</td>
</tr>
</tbody>
</table>

CT = Computertomografie. CTC = Computertomographie-Koloskopie. K. A. = keine Angaben. kV = Kilovolt. kVp = Kilovolt Power. mAs = Milliamperesekunden. n = Anzahl. 2-D = Zwei-dimensional. 3-D = Dreidimensional. Quelle: Bruzzi et al. 2004, ÖBIG-FP-eigene Darstellung
Tabelle 36: Cohnen et al. 2004

Feasibility of MDCT Colonography in Ultra-Low-Dose Technique in the Detection of Colorectal Lesions: Comparison with High-Resolution Video Colonoscopy

<table>
<thead>
<tr>
<th>Forschungsfrage(n)/Studienziel(e)</th>
<th>Abschätzung der Sensitivität und Spezifität von Ultra-Niedrigdosis-Mehrschicht-CTC in der Detektion von endoluminalen Kolonläsionen im Vergleich zu hochauflösender Videokoloskopie</th>
</tr>
</thead>
</table>

Methodik

<table>
<thead>
<tr>
<th>Studiendesign</th>
<th>Prospektiv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einschluss-/Ausschlusskriterien</td>
<td>K. A.</td>
</tr>
<tr>
<td>Rekrutierung</td>
<td>Zuweisung zur Koloskopie an das Zentrum</td>
</tr>
<tr>
<td>Verblindung</td>
<td>Prüfärzte waren verblindet gegenüber den Ergebnissen der jeweils anderen Untersuchungsmethode</td>
</tr>
<tr>
<td>Statistische Analyse</td>
<td>Cross-table-Analyse, Spearman’s Rank Correlation Test, Student’s T Test, Wilcoxon’s Signed Rank Test; p = 0,05. Software: SPSS version 11.0 for Microsoft Windows</td>
</tr>
</tbody>
</table>

Setting

<table>
<thead>
<tr>
<th>Land</th>
<th>Deutschland</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zentrum</td>
<td>Universitätsklinik Düsseldorf</td>
</tr>
<tr>
<td>Zeitraum der Untersuchung</td>
<td>K. A.</td>
</tr>
<tr>
<td>(Bei allen Patienten) angewendete Verfahren/-Untersuchungen</td>
<td>Ultra-Niedrigdosis-Mehrschicht-CTC und Videokoloskopie</td>
</tr>
</tbody>
</table>

Diagnose

<table>
<thead>
<tr>
<th>Referenzverfahren</th>
<th>Koloskopie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untersuchtes Verfahren</td>
<td>Ultra-Niedrigdosis-MD-CTC</td>
</tr>
</tbody>
</table>

Technische Charakteristika des Gerätes/der Geräte (Auswertungsmodus)

| Ultra-Niedrigdosis-MD-CTC: Somatom Plus 4 Volume Zoom Scanner (Siemens Medical Solutions) |
| Kollimation: 4 x 1 mm |
| Rekonstruktionsschichtdicke: 1,25 mm |
| Rekonstruktionsintervall: 0,7 mm |
| Tischvorschub: 8 mm |
| Pitch: 8; 2 |
| Rotationszeit: 0,5 sek |
| Röhrenspannung: 120 kVp |
| Röhrenstrom: 10 effektive mAs (resultierend in gewichtetem CT-Dosis Index: 1,14 mGy) |
| Bildgebung: 2-D und 3-D |

Darmvorbereitung

Lage bei der Untersuchung

Rückenlage

Befundung/Erfahrung der Ärzte

CTC: Jeweils ein erfahrener Radiologe und Gastroenterologe; k. A. über Grad der Erfahrung
Koloskopie: „erfahrener Endoskopie-Gastroenterologe“
Effektivität und Effizienz der CT-Koloskopie im Vergleich zur konventionellen Koloskopie in der Darmkrebsdiagnose und -früherkennung

Fortsetzung Tabelle 36: Cohnen et al. 2004

<table>
<thead>
<tr>
<th>Untersuchte Personen</th>
<th>Anzahl</th>
<th>137</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geschlecht</td>
<td></td>
<td>77 Männer, 60 Frauen</td>
</tr>
<tr>
<td>Alter</td>
<td>57,1 Jahre</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Charakterisierung</th>
<th>Symptomatische Patienten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Änderungen der Stuhlgewohnheiten:</td>
<td>31 (22,6 %)</td>
</tr>
<tr>
<td>Bauchschmerzen:</td>
<td>43 (31,4 %)</td>
</tr>
<tr>
<td>Blut im Stuhl:</td>
<td>26 (19 %)</td>
</tr>
<tr>
<td>Kontrollkoloskopie nach vorangegangener Polypektomie:</td>
<td>37 (27 %)</td>
</tr>
</tbody>
</table>

Keiner der Patienten hatte bereits einen Tumor oder Verwandte mit einem Kolonkarzinom

Auftraggeber/Sponsoren | K. A.

<table>
<thead>
<tr>
<th>Wesentliche Ergebnisse</th>
</tr>
</thead>
</table>

Verfahrensvergleich	Alle Patienten	Polypen		
		≥ 10 mm	9,9–5 mm	< 5 mm
Gesamt	137	14	14	107
Sensitivität (%)	70,3	78,6	85,7	57
Spezifität (%)	80,8	100	92,8	85,9

Andere Ergebnisse
Positiver prädiktiver Wert: 76,3 %
Negativer prädiktiver Wert: 75,6 %

Nicht auswertbare Befunde
Teilweise beschrieben

Komplikationen
Angegeben (keine Komplikationen)

Diskussion von Biasformen
Nein

CT = Computertomografie, CTC = Computertomografie-Koloskopie, K. A. = keine Angaben, kV = Kilovolt, mAs = Milliampere- sekunden, MDCTC = multi-detector CTC = Mehrschicht-CTC, mGy = milliGray, mSv = Millisievert, p = p-Wert, 2-D = Zweidimensional, 3-D = Dreidimensional.

Quelle: Cohnen et al. 2004, ÖBIG-FP-eigene Darstellung

Tabelle 37: Hoppe et al. 2004

Prospective Comparison of Contrast Enhanced CT Colonography and Conventional Colonoscopy for Detection of Colorectal Neoplasms in a Single Institutional Study Using Second-Look Colonoscopy with Discrepant Results

<table>
<thead>
<tr>
<th>Forschungsfrage(n)/ Studienziel(e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vergleich von CTC mit konventioneller Koloskopie für die Detektion von kolorektalen Neoplasmen</td>
</tr>
</tbody>
</table>

Methodik

Studiendesign
Prospektiv

Einschluss-/Ausschlusskriterien
K. A.
8 Patienten wurden ausgeschlossen
Koloskopische Evaluierung unmöglich wegen Reststuhl und Flüssigkeit: 1
Anal sphinkterinsuffizienz: 1
Koloskopie nicht möglich wegen nicht passierbarer Stenose: 6

Rekrutierung
Zuweisung zum Zentrum für Koloskopie

Verblindung
CTC: Radiologen waren gegenüber der Krankengeschichte der Patienten verblindet
Koloskopie: Endoskopist war gegenüber den Befunden der CTC verblindet.
Segmentale Entblindung

Statistische Analyse
Sensitivität, Spezifität, negativer prädiktiver Wert, positiver prädiktiver Wert, Konfidenzintervalle, Fisher's Exact Test für Signifikanz
Fortsetzung Tabelle 37: Hoppe et al. 2004

Prospective Comparison of Contrast Enhanced CT Colonography and Conventional Colonoscopy for Detection of Colorectal Neoplasms in a Single Institutional Study Using Second-Look Colonoscopy with Discrepant Results

<table>
<thead>
<tr>
<th>Setting</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Land</td>
<td>Schweiz</td>
</tr>
<tr>
<td>Zentrum</td>
<td>Universitätsklinik Bern</td>
</tr>
<tr>
<td>Zeitraum der Untersuchung</td>
<td>K. A.</td>
</tr>
<tr>
<td>(Bei allen Patienten) angewendete Verfahren/-Untersuchungen</td>
<td>CTC, direkt gefolgt von Koloskopie</td>
</tr>
</tbody>
</table>

Diagnose

<table>
<thead>
<tr>
<th>Referenzverfahren</th>
<th>Koloskopie mit segmentaler Entblindung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untersuchtes Verfahren</td>
<td>CTC</td>
</tr>
</tbody>
</table>

Technische Charakteristika des Geräts/der Geräte (Auswertungsmodus)

<table>
<thead>
<tr>
<th>CTC: Asteion-4-Kanal-Multidetector-CT-Scanner (Toshiba, Tokio, Japan)</th>
<th>Koloskopie: K. A.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kollimation: 4 x 2 mm</td>
<td>Kollimation: 4 x 2 mm</td>
</tr>
<tr>
<td>Röhrenspannung: 120 kV</td>
<td>Röhrenspannung: 120 kV</td>
</tr>
<tr>
<td>Gantry Rotation: 0,75 sek</td>
<td>Gantry Rotation: 0,75 sek</td>
</tr>
<tr>
<td>Röhrenstrom: 100 mA</td>
<td>Röhrenstrom: 100 mA</td>
</tr>
<tr>
<td>Pitch: 1,375</td>
<td>Pitch: 1,375</td>
</tr>
<tr>
<td>Kontrastmittel: 120 ml (3 ml/sek)</td>
<td>Kontrastmittel: 120 ml (3 ml/sek)</td>
</tr>
<tr>
<td>Iopromid (Ultravist 300, Berlex Laboratories, Montville, New Jersey)</td>
<td>Iopromid (Ultravist 300, Berlex Laboratories, Montville, New Jersey)</td>
</tr>
<tr>
<td>Workstation: Advantage (Version 4.0, General Electric Medical Systems, Milwaukee, Wisconsin) mit Sun Ultra Sparc 60 Hardware</td>
<td>Workstation: Advantage (Version 4.0, General Electric Medical Systems, Milwaukee, Wisconsin) mit Sun Ultra Sparc 60 Hardware</td>
</tr>
<tr>
<td>Software: Voxtool 3.0.51f, General Electric Medical Systems, Milwaukee, Wisconsin</td>
<td>Software: Voxtool 3.0.51f, General Electric Medical Systems, Milwaukee, Wisconsin</td>
</tr>
<tr>
<td>Bildgebung: 2-D und 3-D</td>
<td>Bildgebung: 2-D und 3-D</td>
</tr>
</tbody>
</table>

Darmvorbereitung

| Am Tag vor der Untersuchung: 4 l Methylcellulose Einblasen von Raumluft je nach Toleranz des Patienten Intravenöse Kontrastmittelgabe (außer bei 24 Patienten wegen Kontraindikation) |

Lage bei der Untersuchung

| Bauch und Rückenlage |

Befundung/Erfahrung der Ärzte

| CTC: 3 Radiologen, die vor Beginn der Studie zwischen 30 und 60 Untersuchungen interpretiert haben Koloskopie: k. A. zur Erfahrung der Ärzte |

Untersuchte Personen

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geschlecht</td>
<td>62 Männer, 38 Frauen</td>
</tr>
<tr>
<td>Alter</td>
<td>Ø 66 (20 bis 91 Jahre)</td>
</tr>
</tbody>
</table>

Charakterisierung

Symptomatische Patienten:

- Hämatochezie
- Positiver okkuler Bluttest
- Eisenmangelanämie
- Zustand nach Dickdarmtumor
- Dickdarmtumor in der Familienanamnese

Bei keinem der Patienten waren bisher Polypen gefunden worden.

Auftraggeber/Sponsoren

| Helmut-Horten-Stiftung, Lugano, Schweiz |
Fortsetzung Tabelle 37: Hoppe et al. 2004

Prospective Comparison of Contrast Enhanced CT Colonography and Conventional Colonoscopy for Detection of Colorectal Neoplasms in a Single Institutional Study Using Second-Look Colonoscopy with Discrepant Results

Wesentliche Ergebnisse

<table>
<thead>
<tr>
<th>Verfahrensvergleich</th>
<th>Sensitivität und Spezifität der CTC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a) Analyse nach Patient</td>
</tr>
<tr>
<td></td>
<td>Sensitivität</td>
</tr>
<tr>
<td>6 mm und größer</td>
<td>76 %</td>
</tr>
<tr>
<td>KI 95 %</td>
<td>0,59–0,89</td>
</tr>
<tr>
<td>10 mm und größer</td>
<td>95 %</td>
</tr>
<tr>
<td>KI 95 %</td>
<td>0,75–0,99</td>
</tr>
<tr>
<td>b) Analyse nach Polyp</td>
<td></td>
</tr>
<tr>
<td></td>
<td>n</td>
</tr>
<tr>
<td>10 mm und größer</td>
<td>31</td>
</tr>
<tr>
<td>KI 95 %</td>
<td></td>
</tr>
<tr>
<td>6 mm und größer</td>
<td>59</td>
</tr>
<tr>
<td>KI 95 %</td>
<td></td>
</tr>
<tr>
<td>6–9 mm</td>
<td>28</td>
</tr>
<tr>
<td>KI 95 %</td>
<td></td>
</tr>
<tr>
<td>5 mm und kleiner</td>
<td>63</td>
</tr>
<tr>
<td>KI 95 %</td>
<td></td>
</tr>
<tr>
<td>Alle Größen</td>
<td>122</td>
</tr>
</tbody>
</table>

Andere Ergebnisse

Gesamtsensitivität zur Detektion von Adenomen (patientenbezogen): 73 %

Polypenevaluierung

Nicht auswertbare Befunde

Beschrieben

Komplikationen

K. A.

Diskussion von Biasformen

Nein

Schlussfolgerung(en) der Autoren

Die CTC hat hohe Sensitivitäts- und Spezifitätswerte für kolorekte Neoplasmen mit einer Größe von 10 mm oder größer

CTC = Computertomografie-Koloskopie. K. A. = keine Angaben. KI = Konfidenzintervall. mA = Milliampere.mAs = Milliampere- sekunden. kV = Kilovolt. 2-D = Zweidimensional. 3-D = Dreidimensional.

Tabelle 38: Iannaccone et al. 2004

<table>
<thead>
<tr>
<th>Forschungsfrage(n)/ Studienziel(e)</th>
<th>Detektion von kolorektalen Polypen durch Niedrig-Dosis-Mehrschicht-CTC ohne abführende Darmvorbereitung im Vergleich zu Koloskopie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methodik</td>
<td>Studiendesign Prospektiv</td>
</tr>
</tbody>
</table>
| **Einschluss-/Ausschlusskriterien** | **Einschlusskriterien:** Patienten ≥ 35 Jahre, für die eine Koloskopie geplant war
Ausschlusskriterien:
- FAP oder HNPPC in der Anamnese
- Zustand nach kolorektalen Operationen
- Verdacht auf entzündliche Darmerkrankungen, Darmverschluss, oder akute Divertikulitis
- Zustand des Patienten macht Darmvorbereitung unmöglich
- Ablehnung der Koloskopie
- Kontraindikationen für die Einnahme von jodhaltigen Kontrastmitteln
- Schwangerschaft |
| **Rekrutierung** | **Vorgesehene Koloskopie** |
| **Verblindung** | **CTC:** 3 Radiologen interpretierten jede CTC getrennt und unabhängig voneinander; sie waren gegenüber den Ergebnissen der Koloskopie verblindet
Koloskopie: 1 Arzt, primär verblindet gegenüber den Resultaten der CTC; segmentale Entblindung |
| **Statistische Analyse** | **Analyse pro Poly:** Sensitivität
Analyse pro Patient: Sensitivität, Spezifität, positiver prädiktiver Wert, negativer prädiktiver Wert, 95-%-Konfidenzintervall
Untersuchervariabilität: K-Statistik
Software: SPSS für Windows Version 11.0.0; SPSS Incorporation, Chicago, Illinois |
| **Setting** | **Land** Italien
Zentrum Universitätsklinik
Zeitraum der Untersuchung K. A.
(Bei allen Patienten)
angewendete Verfahren/-Untersuchungen CTC und Koloskopie (3–7 Tage danach) |
| **Diagnose** | **Referenzverfahren** Koloskopie mit segmentaler Entblindung
Untersuchtes Verfahren Niedrigdosis-CTC |
| **Technische Charakteristika des Geräts/der Geräte (Auswertungsmodus)** | **CTC:** Mehrschicht-Spiral-CT-Scanner (Somatom Plus 4 Volume Zoom; Siemens, Erlangen, Deutschland)
Röhrenrotationszeit: 0,5 sek
Kollimation: 2,5 mm
Schichtdicke: 3,0 mm
Rekonstruktionsintervall: 1,0 mm
Tischgeschwindigkeit: 17,5 mm/sek
Erfassungszeit: 12–18 sek
Röhrenstrom: 10 effektive mAs
Röhrenspannung: 140 kVp
Software: Vitrea 2; Vital Images, Plymouth, Minnesota)
Bildanalyse: 2-D, 3-D bei Abnormalität |
| | **Koloskopie:** Standard-Videokoloskop (Olympus C240; Olympus Optical Co, Tokio, Japan)**
Fortsetzung Tabelle 38: Iannaccone et al. 2004

<table>
<thead>
<tr>
<th>Computertomographische Colonographie ohne Kontrastmittelpräparation für die Erkennung von Kolonpolypen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darmvorbereitung</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lage bei der Untersuchung</th>
<th>Bauch- und Rückenlage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Befundung/Erfahrung der Ärzte</td>
<td>CTC: 3 Radiologen, die ca. 300, 200, bzw. 100 CTC-Untersuchungen interpretiert hatten</td>
</tr>
<tr>
<td></td>
<td>Koloskopie: 1 Arzt, der über 5.000 Koloskopien durchgeführt hatte</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Untersuchte Personen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl</td>
</tr>
<tr>
<td>Geschlecht</td>
</tr>
<tr>
<td>Alter</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Charakterisierung</th>
<th>Indikation für Koloskopie:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymptomatische Patienten:</td>
<td>105 (51,7 %)</td>
</tr>
<tr>
<td>Screen: 46 (22,6 %)</td>
<td></td>
</tr>
<tr>
<td>KRK in der Familienanamnese: 32 (15,8 %)</td>
<td></td>
</tr>
<tr>
<td>Polypen in der Anamnese: 19 (9,3 %)</td>
<td></td>
</tr>
<tr>
<td>Abnormer Screeningtest: 8 (3,9 %)</td>
<td></td>
</tr>
<tr>
<td>Symptomatische Patienten:</td>
<td>98 (48,3 %)</td>
</tr>
<tr>
<td>Hämatochieze: 38 (18,7 %)</td>
<td></td>
</tr>
<tr>
<td>Änderungen der Stuhlgewohnheiten: 23 (11,3 %)</td>
<td></td>
</tr>
<tr>
<td>Eisenmangelämie: 15 (7,4 %)</td>
<td></td>
</tr>
<tr>
<td>Bauchschmerzen: 12 (5,9 %)</td>
<td></td>
</tr>
<tr>
<td>Gewichtsverlust: 10 (2,1 %)</td>
<td></td>
</tr>
</tbody>
</table>

| Auftraggeber/Sponsoren | K. A. |
Wesentliche Ergebnisse

Patientenbezogene Sensitivität und Spezifität nach Polypengröße (Angaben in %)

<table>
<thead>
<tr>
<th>Befunder 1 (Sensitivität)</th>
<th>≤ 5 mm</th>
<th>≥ 6 mm</th>
<th>≥ 10 mm</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>87,1</td>
<td>91,6</td>
<td>100</td>
<td>89,9</td>
</tr>
<tr>
<td>Befunder 2 (Sensitivität)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>87,1</td>
<td>93,7</td>
<td>100</td>
<td>91,1</td>
</tr>
<tr>
<td>Befunder 3 (Sensitivität)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>87,1</td>
<td>89,6</td>
<td>100</td>
<td>88,6</td>
</tr>
<tr>
<td>Befunder 1 (Spezifität)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>93,5</td>
<td>100</td>
<td>92,7</td>
</tr>
<tr>
<td>Befunder 2 (Spezifität)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>94,2</td>
<td>100</td>
<td>93,5</td>
</tr>
<tr>
<td>Befunder 3 (Spezifität)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>91,3</td>
<td>100</td>
<td>90,3</td>
</tr>
</tbody>
</table>

Polypenbezogene Sensitivität und Spezifität nach Polypengröße (Angaben in %)

<table>
<thead>
<tr>
<th>Befunder 1 (Sensitivität)</th>
<th>≤ 5 mm</th>
<th>≥ 6 mm</th>
<th>≥ 10 mm</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>54,2</td>
<td>86</td>
<td>100</td>
<td>66,6</td>
</tr>
<tr>
<td>Befunder 2 (Sensitivität)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>51,8</td>
<td>87,3</td>
<td>100</td>
<td>64,8</td>
</tr>
<tr>
<td>Befunder 3 (Sensitivität)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50,6</td>
<td>84,8</td>
<td>100</td>
<td>61,7</td>
</tr>
</tbody>
</table>

Andere Ergebnisse

- Positiver prädiktiver Wert bei allen Polypen (befunderabhängig): 85,4–90 %
- Negativer prädiktiver Wert bei allen Polypen (befunderabhängig): 92,6–94,3 %
- Extrakolonische Befunde bei 13,7 % (28/203) der Patienten (klinische Relevanz: 4 hoch, 7 moderat und 17 gering)
- K-Werte der Untersucherkorrelationen: 0,61–0,91

Nicht auswertbare Befunde

Beschrieben

Diskussion von Biasformen

Ja

Schlussfolgerung(en) der Autoren

Niedrig-Dosis-Mehrschicht-CTC ohne abführende Darmvorbereitung zeigt im Vergleich zu konventioneller Koloskopie günstige Ergebnisse hinsichtlich der Detektion von kolorektalen Polypen.

CTC = Computertomografie-Koloskopie. FAP = Familiäre adenomatöse Polyposis. HNPPC = Hereditäres kolorektales Karzinom ohne Polyposis. KRK = Kolorektales Karzinom. kV = Kilovolt. kVp = Kilovolt Power. mAs = Milliamperesekunden. n = Anzahl. 2-D = Zweidimensional. 3-D = Dreidimensional.

Tabelle 39: Macari et al. 2004

<table>
<thead>
<tr>
<th>Colorectal Polyps and Cancers in Asymptomatic Average-Risk Patients: Evaluation with CT Colonography</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forschungsfrage(n)/Studienziel(e): Vergleich von Dünnschicht-Mehrzeilen-CTC mit konventioneller Koloskopie zur Evaluierung von kolorektalen Polypen oder Karzinomen bei asymptomatischen Personen mit durchschnittlichem Risiko</td>
</tr>
<tr>
<td>Methodik</td>
</tr>
<tr>
<td>Studiendesign</td>
</tr>
<tr>
<td>Einschluss-/Ausschlusskriterien</td>
</tr>
<tr>
<td>Einschlusskriterien:</td>
</tr>
<tr>
<td>- Patienten > 50 Jahre, für die eine Koloskopie geplant war</td>
</tr>
<tr>
<td>- Keine kolorektalen Symptome</td>
</tr>
<tr>
<td>- Negative Resultate für FOBT</td>
</tr>
<tr>
<td>- Kein Kolonkarzinom bei einem Verwandten ersten Grades in der Familienanamnese</td>
</tr>
<tr>
<td>Ausschlusskriterien:</td>
</tr>
<tr>
<td>K. A.</td>
</tr>
<tr>
<td>Rekrutierung</td>
</tr>
<tr>
<td>Verblindung</td>
</tr>
<tr>
<td>Statistische Analyse</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Setting</td>
</tr>
<tr>
<td>Land</td>
</tr>
<tr>
<td>Zentrum</td>
</tr>
<tr>
<td>Zeitraum der Untersuchung</td>
</tr>
<tr>
<td>Diagnose</td>
</tr>
<tr>
<td>Referenzverfahren</td>
</tr>
<tr>
<td>Untersuchtes Verfahren</td>
</tr>
<tr>
<td>Technische Charakteristika des Geräts/der Geräte</td>
</tr>
<tr>
<td>(Auswertungsmodus)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Darmvorbereitung</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Lage bei der Untersuchung</td>
</tr>
<tr>
<td>Befundung/Erfahrung der Ärzte</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Effektivität und Effizienz der CT-Koloskopie im Vergleich zur konventionellen Koloskopie in der Darmkrebsdiagnose und -früherkennung

Fortsetzung Tabelle 39: Macari et al. 2004

<table>
<thead>
<tr>
<th>Untersuchte Personen</th>
<th>Polypendetektionsrate der CTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl</td>
<td>68</td>
</tr>
<tr>
<td>Geschlecht</td>
<td>68 Männer</td>
</tr>
<tr>
<td>Alter</td>
<td>55 (50 bis 67 Jahre)</td>
</tr>
<tr>
<td>Charakterisierung</td>
<td>Keiner der Patienten hatte vor der Studie kolorektale Polypten, keiner hatte sich einer Sigmoidioskopie, einem Doppelkontraströntgen des Dickdarms oder einer Koloskopie unterzogen.</td>
</tr>
<tr>
<td>Auftraggeber/Sponsoren</td>
<td>K. A.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wesentliche Ergebnisse</th>
<th>Polypendetektionsrate der CTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verfahrensvergleich</td>
<td>Polypengröße (mm)</td>
</tr>
<tr>
<td>1–5</td>
<td>9/78</td>
</tr>
<tr>
<td>6–9</td>
<td>9/17</td>
</tr>
<tr>
<td>≥ 10</td>
<td>3/3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nicht auswertbare Befunde</th>
<th>Beschrieben</th>
</tr>
</thead>
<tbody>
<tr>
<td>Komplikationen</td>
<td>K. A.</td>
</tr>
<tr>
<td>Diskussion von Biasformen</td>
<td>Nein</td>
</tr>
</tbody>
</table>

Schlussfolgerung(en) der Autoren

CTC ist eine sensitive und spezifische Screeningmethode zur Detektion von Polypten ab 10 mm. Die Sensitivität für kleinere Polypten ist geringer. Bei einem routinemäßigen Screeningintervall von 5 Jahren ist das Übersehen von kleinen Läsionen wahrscheinlich nicht klinisch relevant.

CTC = Computertomografie-Koloskopie. FOBT = Test auf okkultes Blut im Stuhl. K. A. = keine Angaben. kV = Kilovolt. mAs = Milliamperesekunden. min. = Minuten, n = Anzahl. 2-D = Zweidimensional. 3-D = Dreidimensional.

Quelle: Macari et al. 2004, ÖBIG-FP-eigene Darstellung

Tabelle 40: Macari et al. 2004

<table>
<thead>
<tr>
<th>Significance of Missed Polypt at CT Colonography</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestimmung der Histologie und klinischen Signifikanz von Polypten, die bei CTC nicht gefunden wurden und Vorschlag für Richtlinien für Nachuntersuchungen basierend, auf CTC-Ergebnissen</td>
</tr>
</tbody>
</table>

Methodik

Studiendesign Prospektiv

Einschluss-/Ausschlusskriterien

Einschlusskriterien:
- Patienten > 50 Jahre, für die eine Koloskopie geplant war
- Keine kolorektalen Symptome
- Negative Resultate für fäkalen okkulten Bluttest
- Kolonkarzinom in einem Verwandten ersten Grades nicht in der Familienanamnese

Ausschlusskriterien:
- K. A.

Rekrutierung Geplante Koloskopie

Verblindung CTC: Radiologe war gegenüber Patientengeschichte, Risikofaktoren und anderer demografischer Information verblindet. Gastroenterologe war gegenüber den Ergebnissen der CTC verblindet

Statistische Analyse Spezifität und Sensitivität, 95-%-Konfidenzintervall

Setting

Land USA

Zentrum Tisch Hospital, NYU Medical Center

Zeitraum der Untersuchung Juli 2001 bis März 2003

(Bei allen Patienten) angewendete Verfahren/-Untersuchungen 1. CTC, danach Koloskopie innerhalb von 3 Stunden

DAHTA@DIMDI Seite 131 von 164
Fortsetzung Tabelle 40: Macari et al. 2004

Significance of Missed Polyps at CT Colonography

<table>
<thead>
<tr>
<th>Diagnose</th>
<th>Koloskopie</th>
<th>CTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Referenzverfahren</td>
<td>Koloskopie</td>
<td>CTC</td>
</tr>
<tr>
<td>Untersuchtes Verfahren</td>
<td>CTC</td>
<td>CTC</td>
</tr>
</tbody>
</table>

Technische Charakteristika des Geräts/der Geräte (Auswertungsmodus)

CTC: Plus 4 Volumne Zoom MDCT System (Siemens Medical Solutions)
Detektorkonfiguration: 4 x 1 mm
Gantry Rotation: 0,5 sek
Röhrenstrom: 50 effekt. mAs
Röhrenspannung: 120 kV
Rekonstruktions-Schichtdicke: 1,25 mm
Rekonstruktionsintervall: 1 mm
Workstation: Vitrea 2 (Vital Images).
Bildgebung: 2-D und 3-D

K. A.

Darmvorbereitung

Am Tag vor der Untersuchung: 2 x 45 ml Natriumphosphat (Phosphosoda prep 1, Fleet Pharmaceuticals) oder 4 l Polyethyleneglykol-Elektrolytlösung (GOLYTELY, Braintree laboratories)
Direkt vor der Untersuchung: Patienten entleerten Restflüssigkeit
Einblasen von Raumluft bis zur Toleranzgrenze

Lage bei der Untersuchung

Bauch- und Rückenlage.

Befundung/Erfahrung der Ärzte

CTC: 1 Radiologe mit 5 Jahren Erfahrung in der Interpretation von CTC
Interpretationszeit für CTC: 9 min (5-17 min)

Die Koloskopie wurde von einem zertifizierten Gastroenterologen oder Forschungsstipendiaten unter Aufsicht des Gastroenterologen durchgeführt.

Untersuchte Personen

Anzahl: 186
Geschlecht: 186 Männer
Alter: 62,3 (40-87 Jahre)

Charakterisierung

Indikationen für Koloskopie:
- Rektale Blutungen: 29
- Änderungen der Stuhlgewohnheiten: 14
- Positiver fäkaler okkulter Bluttest: 43
- Eisenmangelanämie: 24
- Polypen in der Krankengeschichte: 19
- Screening: 57

Auftraggeber/Sponsoren

K. A.

Wesentliche Ergebnisse

Verfahrensvergleich

| Polypendetektionsrate mit CTC im Vergleich zur konventionellen Koloskopie |
|-------------------------------|-----------------|-----------------|-----------------|
| Technik | ≤ 5 mm | 6–9 mm | ≥ 10 mm |
| CTC | 21 | 12 | 20 |
| Koloskopie | 143 | 26 | 22 |

Mittels CTC erfasst (%)

14,7 | 46,2 | 90,9
Fortsetzung Tabelle 40: Macari et al. 2004

<table>
<thead>
<tr>
<th>Andere Ergebnisse</th>
<th>Histologischer Befund der in der CTC nicht entdeckten Läsionen</th>
<th>Anzahl (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Befund</td>
<td>Polypengröße (n = 122)</td>
<td></td>
</tr>
<tr>
<td>Kolonmukosa</td>
<td>≤ 5 mm</td>
<td>30 (24,6)</td>
</tr>
<tr>
<td></td>
<td>6-9 mm</td>
<td>1 (7,1)</td>
</tr>
<tr>
<td></td>
<td>≥ 0 mm</td>
<td>0</td>
</tr>
<tr>
<td>Hyperplastischer</td>
<td>Polyp</td>
<td></td>
</tr>
<tr>
<td>Adenom</td>
<td>≤ 5 mm</td>
<td>37 (30,3)</td>
</tr>
<tr>
<td></td>
<td>6-9 mm</td>
<td>3 (21,4)</td>
</tr>
<tr>
<td></td>
<td>≥ 0 mm</td>
<td>0</td>
</tr>
<tr>
<td>Tubuläres</td>
<td>ADenom</td>
<td></td>
</tr>
<tr>
<td>Adenom</td>
<td>≤ 5 mm</td>
<td>43 (35,2)</td>
</tr>
<tr>
<td></td>
<td>6-9 mm</td>
<td>7 (50)</td>
</tr>
<tr>
<td></td>
<td>≥ 0 mm</td>
<td>1 (50)</td>
</tr>
<tr>
<td>Tubulovillöses</td>
<td>ADenom</td>
<td></td>
</tr>
<tr>
<td>Adenom</td>
<td>≤ 5 mm</td>
<td>7 (5,7)</td>
</tr>
<tr>
<td></td>
<td>6-9 mm</td>
<td>1 (7,1)</td>
</tr>
<tr>
<td></td>
<td>≥ 0 mm</td>
<td>1 (50)</td>
</tr>
<tr>
<td>Villöses Adenom</td>
<td>≤ 5 mm</td>
<td>1 (0,8)</td>
</tr>
<tr>
<td></td>
<td>6-9 mm</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>≥ 0 mm</td>
<td>0</td>
</tr>
<tr>
<td>Unbekannt</td>
<td>≤ 5 mm</td>
<td>4 (3,3)</td>
</tr>
<tr>
<td></td>
<td>6-9 mm</td>
<td>2 (14,3)</td>
</tr>
<tr>
<td></td>
<td>≥ 0 mm</td>
<td>0</td>
</tr>
</tbody>
</table>

Nicht auswertbare Befunde

<table>
<thead>
<tr>
<th>Beschrieben</th>
</tr>
</thead>
</table>

Komplikationen

<table>
<thead>
<tr>
<th>K. A.</th>
</tr>
</thead>
</table>

Diskussion von Biasformen

<table>
<thead>
<tr>
<th>Nein</th>
</tr>
</thead>
</table>

Schlussfolgerung(en) der Autoren

Bei unauffälliger CTC wird eine Folgescreeninguntersuchung in 5 Jahren empfohlen, bei Läsionen unter 5 mm in 3-5 Jahren. Läsionen über 6 mm sollen zur Endoskopie und Polypektomie zugewiesen werden.

CTC = Computertomografie-Koloskopie. K. A. = Keine Angaben. kV = Kilovolt. mAs = Milliamperesekunde. min = Minuten. n = Anzahl. 2-D = Zwei-dimensional. 3-D = Dreidimensional.

Quelle: Macari et al. 2004, ÖBIG-FP-eigene Darstellung

Tabelle 41: Van Gelder et al. 2004

<table>
<thead>
<tr>
<th>Forschungsfrage(n)/Studienziel(e)</th>
<th>Untersuchung der Leistungsfähigkeit der CTC im Vergleich zur Koloskopie in der Detektion von Personen mit großen Polypen (≥ 10 mm), die ein erhöhtes Risiko aufweisen, an kolorektalem Karzinom zu erkranken</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methodik</td>
<td></td>
</tr>
<tr>
<td>Studiendesign</td>
<td>Prospektiv</td>
</tr>
<tr>
<td>Einschluss-/Ausschlusskriterien</td>
<td>Einschlusskriterien:</td>
</tr>
<tr>
<td></td>
<td>• Patienten mit erhöhtem Risiko (persönliche oder familiäre Historie für kolorektale Polypen oder KRK)</td>
</tr>
<tr>
<td></td>
<td>Ausschlusskriterien:</td>
</tr>
<tr>
<td></td>
<td>• Personen unter 18 Jahren</td>
</tr>
<tr>
<td></td>
<td>• Fehlendes Verstehen der Patienteninformation bzw. der Einwilligungserklärung</td>
</tr>
<tr>
<td></td>
<td>• Ablehnung, die Einwilligungserklärung zu unterschreiben</td>
</tr>
<tr>
<td></td>
<td>• Diagnose von kolorektalen Polypen oder KRK</td>
</tr>
<tr>
<td></td>
<td>• Künstlicher Dickdarmausgang nach kolorektaler Operation</td>
</tr>
<tr>
<td>Rekrutierung</td>
<td>Vorgesehene Koloskopie bei Patienten mit erhöhtem Risiko (persönliche oder familiäre Historie für kolorektale Polypen oder KRK)</td>
</tr>
<tr>
<td>Verblindung</td>
<td>Befundung der CTC-Ergebnisse verblindet gegenüber Koloskopieergebnissen</td>
</tr>
<tr>
<td>Statistische Analyse</td>
<td>Sensitivität, Spezifität</td>
</tr>
<tr>
<td>Setting</td>
<td></td>
</tr>
<tr>
<td>Land</td>
<td>Niederlande</td>
</tr>
<tr>
<td>Zentrum</td>
<td>Universitätsklinik Amsterdam (Academic Medical Center), Slotervaart Hospital</td>
</tr>
<tr>
<td>Zeitraum der Untersuchung</td>
<td>Oktober 2000-September 2002</td>
</tr>
<tr>
<td>(Bei allen Patienten) angewendete Verfahren/-Untersuchungen</td>
<td>Durchführung zunächst der CTC und ca. 1 Stunde später der Koloskopie</td>
</tr>
</tbody>
</table>
Fortsetzung Tabelle 41: Van Gelder et al. 2004

<table>
<thead>
<tr>
<th>Diagnose</th>
<th>Referenzverfahren</th>
<th>Untersuchtes Verfahren</th>
<th>Technische Charakteristika des Geräts/der Geräte (Auswertungsmodus)</th>
<th>Darmvorbereitung</th>
<th>Lage bei der Untersuchung</th>
<th>Befundung/Erfahrung der Ärzte</th>
<th>Untersuchte Personen</th>
<th>Auftraggeber/Sponsoren</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bildgebung: 3-D, 2-D bei Verdacht auf Abnormalität</td>
<td></td>
<td></td>
<td></td>
<td>Geschlecht: 146 Männer, 103 Frauen</td>
<td>Alter: 56</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Scanparameter:</td>
<td></td>
<td></td>
<td></td>
<td>Charakterisierung: Symptomatische und asymptomatische Personen; Personen mit erhöhtem Risiko: Screening aufgrund kolorektaler Polypen oder kolorektalem Karzinom in der Familienanamnese: 91 Personen (36 %), Beobachtung von kolorektalen Polypen oder kolorektalem Karzinom in der Familienanamnese: 158 Personen (64 %).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Kollimation: 4 x 2,5 mm</td>
<td></td>
<td></td>
<td></td>
<td>Auftraggeber/Sponsoren: K. A.</td>
<td></td>
</tr>
</tbody>
</table>
Fortsetzung Tabelle 41: Van Gelder et al. 2004

Computed Tomographic Colonography Compared with Colonoscopy in Patients at Increased Risk for Colorectal Cancer

Wesentliche Ergebnisse

<table>
<thead>
<tr>
<th>Verfahrensvergleich</th>
<th>Patientenbezogene Sensitivität und Spezifität der CTC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Koloskopie (n)</td>
</tr>
<tr>
<td>Sensitivität</td>
<td></td>
</tr>
<tr>
<td>Patienten mit Polypen</td>
<td></td>
</tr>
<tr>
<td>Alle Polypen</td>
<td>141</td>
</tr>
<tr>
<td>≥ 6 mm</td>
<td>45</td>
</tr>
<tr>
<td>≥ 10 mm</td>
<td>31 (25+6)</td>
</tr>
<tr>
<td>Spezifität</td>
<td></td>
</tr>
<tr>
<td>Patienten ohne Polypen</td>
<td></td>
</tr>
<tr>
<td>Alle Polypen</td>
<td>108</td>
</tr>
<tr>
<td>≥ 6 mm</td>
<td>204</td>
</tr>
<tr>
<td>≥ 10 mm</td>
<td>218 (224–6)</td>
</tr>
</tbody>
</table>

Polypenbezogene Sensitivität nach Morphologie

<table>
<thead>
<tr>
<th>Morphologie</th>
<th>Polypengröße (mm)</th>
<th>Koloskopie (n)</th>
<th>Befunder 1 n (%)</th>
<th>95 % Konfidenzintervall (%)</th>
<th>Befunder 2 n (%)</th>
<th>95 % Konfidenzintervall (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>< 6</td>
<td>405</td>
<td>149 (37)</td>
<td>132 (33)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6–9</td>
<td>36</td>
<td>23 (64)</td>
<td>27 (75)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 10</td>
<td>48 (40+8)</td>
<td>36 (75)</td>
<td>37 (77)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sessil</td>
<td>< 6</td>
<td>306</td>
<td>126 (41)</td>
<td>110 (36)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6–9</td>
<td>23</td>
<td>17 (74)</td>
<td>20 (87)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 10</td>
<td>21 (17+4)</td>
<td>20 (95)</td>
<td>20 (95)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gestielt</td>
<td>< 6</td>
<td>11</td>
<td>5 (45)</td>
<td>8 (73)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6–9</td>
<td>6</td>
<td>5 (83)</td>
<td>6 (100)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 10</td>
<td>13 (12+1)</td>
<td>12 (92)</td>
<td>12 (92)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flach</td>
<td>< 6</td>
<td>88</td>
<td>18 (20)</td>
<td>14 (16)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6–9</td>
<td>7</td>
<td>1 (14)</td>
<td>1 (14)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 10</td>
<td>14 (11+3)</td>
<td>4 (29)</td>
<td>5 (36)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Andere Ergebnisse

<table>
<thead>
<tr>
<th>Sensitivität für adenomatöse Polypen.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenomatöse Läsionen nach Größe (mm)</td>
</tr>
<tr>
<td>Koloskopie (n)</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>< 6</td>
</tr>
<tr>
<td>6–9</td>
</tr>
<tr>
<td>≥ 10</td>
</tr>
</tbody>
</table>

Nicht auswertbare Befunde

Von anfänglich insgesamt 288 Personen, die in die Studie eingeschlossen waren, wurden 39 Personen aufgrund folgender Ursachen ausgeschlossen: Unzureichende Darmschluflastung für die CTC und Koloskopie: 12 Fälle (4 %) Mangelhafte CTC aufgrund unzureichernder Darmschluflastung, technischer Probleme usw.: 20 Fälle (7 %) Nichterreichen des Blinddarms bei der Koloskopie: 5 Fälle (2 %) Nichterscheinen zum Untersuchungstermin: 3 Fälle (1 %) 1 Person wies gleichzeitig eine unzureichende Darmvorbereitung sowie mangelhafte CTC auf. Daher ergibt die Gesamtzahl 39 statt 40 Personen.

Komplikationen

K. A.

Diskussion von Biasformen

Ja

Schlussfolgerung(en) der Autoren

CTC und Koloskopie weisen bei Patienten, die ein erhöhtes Risiko für KRK haben, bei der Identifizierung von Personen mit großen Polypen eine ähnliche Leistungsfähigkeit auf. Der hohe Anteil von nicht entdeckten flachen Läsionen bedarf weiterer Abklärung.

CTC = Computertomografie-Koloskopie. K. A. = keine Angaben. KRK = Kolorektales Karzinom. kV = Kilovolt. mAs = Milliamperesekunde. n = Anzahl. 2-D = Zweidimensional. 3-D = Dreidimensional.

Quelle: Van Gelder et al. 2004, ÖBIG-FP-eigene Darstellung
Tabelle 42: Vogt et al. 2004

Detection of colorectal polyps by multislice CT colonography with ultra-low-dose technique: comparison with high-resolution videocolonoscopy

<table>
<thead>
<tr>
<th>Forschungsfrage(n)/Studienziel(e)</th>
<th>Evaluierung eines Mehrzeilen-CTC mit Ultra-Niedrigdosis zur Detektion von kolorektalen Polypen bei Patienten mit unspezifischen Bauchbeschwerden bei durchschnittlichem Risiko für KRK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methodik</td>
<td></td>
</tr>
<tr>
<td>Studiendesign</td>
<td>Prospektiv</td>
</tr>
<tr>
<td>Einschluss-/ Ausschlusskriterien</td>
<td></td>
</tr>
</tbody>
</table>
| Einschlusskriterien: | • Patienten mit durchschnittlichem Risiko (nach definierten Kriterien)
 • Zuweisung zur Koloskopie wegen unspezifischer Symptome im Abdomen (chronische Verstopfung oder chronische Bauchschmerzen) |
| Ausschlusskriterien: | K. A.
| Rekrutierung | Patienten aus einer Ambulanz |
| Verblindung | Die eine CTC-Interpretation durchführenden Ärzte waren verblindet gegenüber den Befunden der Koloskopie und umgekehrt. |
| Statistische Analyse | Sensitivität und Spezifität. Software: SPSS for Windows 10.0; SPSS Inc., Chicago, Illinois) |
| **Setting** | |
| Land | Deutschland |
| Zentrum | Universitätsklinik Düsseldorf |
| Zeitraum der Untersuchung | September 2001 bis Juli 2002 |
| (Bei allen Patienten) angewendete Verfahren/-Untersuchungen | CTC unmittelbar vor Koloskopie |
| **Diagnose** | |
| Referenzverfahren | Koloskopie |
| Untersuchtes Verfahren | CTC mit Ultra-Niedrigdosis |
| **Technische Charakteristika des Geräts/der Geräte (Auswertungsmodus)** | CTC
 Somatom Plus 4 Volume Zoom
 (Siemens Medical Solutions, Erlangen, Deutschland)
 Kollimation: 4 x 1 mm
 Rekonstruierte Schichtdicke: 1,25 mm
 Rekonstruktionsinkrement: 0,7 mm
 Tischvorschub: 8 mm
 Pitch: 8
 Röhrenstrom: 10 mAs
 CT Dosis Index: 1,14 mGy
 Software: Eccet
 Bildgebung: 2-D und 3-D
 Koloskopie
 Hochauflösendes Endoskop, Prozessor und Lichtquelle (PCF-Q160AL, Evis Exera 160, Olympus Optical Co., Hamburg, Deutschland) |
| Darmvorbereitung | CTC: Bisacodyl Tabletten (Prepacol; Guerbet GmbH, Sulzbach/Taunus, Deutschland)
 Einblasen von Raumluft durch den Patienten bis zur Toleranzgrenze
 Koloskopie:
 4–5 l Polyethylenglycol-Elektrolytlösung (Endofalk; Falk Pharma, Freiburg im Breisgau, Deutschland)
 Sedierung: Midazolam und Propofol |
| Lage bei der Untersuchung | Rückenlage |
| Befundung/Erfahrung der Ärzte | CTC: Interpretation durch einen Radiologen und einen Gastroenterologen;
 Klassifikation der Läsionen durch Konsensus
 Koloskopie: durchgeführt von einem erfahrenen, zertifizierten Gastroenterologen |
Fortsetzung Tabelle 42: Vogt et al. 2004

Detection of colorectal polyps by multislice CT colonography with ultra-low-dose technique: comparison with high-resolution videocolonoscopy

<table>
<thead>
<tr>
<th>Untersuchte Personen</th>
<th>Werte für CTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl</td>
<td>115</td>
</tr>
<tr>
<td>Geschlecht</td>
<td>50 Frauen, 65 Männer</td>
</tr>
<tr>
<td>Alter</td>
<td>Ø 58 (41 bis 82 Jahre)</td>
</tr>
<tr>
<td>Charakterisierung</td>
<td>Keiner der eingeschlossenen Patienten hatte einen Verwandten ersten Grades mit KRK oder selbst einen Polypen oder Tumor</td>
</tr>
<tr>
<td>Auftraggeber/Sponsoren:</td>
<td>K. A.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wesentliche Ergebnisse</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Verfahrensvergleich</th>
<th>Sensitivität</th>
<th>Spezifität</th>
<th>Falsch positiv</th>
<th>Falsch negativ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flache Läsionen</td>
<td>50</td>
<td>100</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Polypen < 5 mm</td>
<td>76</td>
<td>75</td>
<td>24</td>
<td>23</td>
</tr>
<tr>
<td>Polypen 5–10 mm</td>
<td>91</td>
<td>83</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Polypen > 10 mm</td>
<td>100</td>
<td>82</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Läsionen ≥5 mm</td>
<td>94</td>
<td>84</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Adenome ≥5 mm</td>
<td>95</td>
<td>92</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Gesamt</td>
<td>80</td>
<td>79</td>
<td>32</td>
<td>30</td>
</tr>
</tbody>
</table>

Nicht auswertbare Befunde	Angegeben
Komplikationen	Angegeben: keine Komplikationen
Diskussion von Biasformen	Nein

Schlussfolgerung(en) der Autoren

Verglichen mit der hochauflösenden Videokoloskopie, hat die Mehrzeilen-CTC mit Ultra-Niedrigdosis ausgezeichnete Sensitivitäts- und Spezifitäts-werte zur Detektion von kolorektalen Läsionen ab 5 mm Größe. Bevor die Methode als Screeningmethode allgemein empfohlen werden kann, sind Verbesserungen zur Detektion von flachen und sehr kleinen Läsionen notwendig.

CTC = Computertomografie-Koloskopie. K.A. = Keine Angaben. KRK = Kolorektales Karzinom. kV = Kilovolt. mGy = milliGray. mAs = Milliamperesekunden. 2-D = Zweidimensional. 3-D = Dreidimensional.

Quelle: Vogt et al. 2004, ÖBIG-FP-eigene Darstellung

Tabelle 43: Iannaccone et al. 2003

Detection of Colorectal Lesions: Lower-Dose Multi-Detector Row Helical CT Colonography Compared with Conventional Colonoscopy

<table>
<thead>
<tr>
<th>Forschungsfrage(n)/ Studienziel(e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vergleich von Niedrigdosis-Mehrfachdetektor-CTC mit konventioneller Koloskopie zur Detektion von kolorektalen Läsionen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Methodik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studiendesign</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Einschluss-/ Ausschlusskriterien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einschlusskriterien: K. A.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ausschlusskriterien:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Entzündliche Darmerkrankungen oder akute Divertikulitis</td>
</tr>
<tr>
<td>• Schwangerschaft</td>
</tr>
<tr>
<td>• Fehlende Einverständniserklärung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rekrutierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>K. A.</td>
</tr>
</tbody>
</table>

DAHTA@DIMDI Seite 137 von 164
Detection of Colorectal Lesions: Lower-Dose Multi-Detector Row Helical CT Colonography Compared with Conventional Colonoscopy

<table>
<thead>
<tr>
<th>Verblindung</th>
<th>Radiologen waren verblindet gegenüber den Befunden der Koloskopie und gegenüber der Indikation für die CTC. Endoskopiker war verblindet gegenüber den Befunden der CTC.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistische Analyse</td>
<td>95%-Konfiidenzintervalle; Pro Polyp: Sensitivität; pro Patient: Sensitivität, Spezifität, positiv prädiktiver Wert, negativ prädiktiver Wert; Software: 11.0.0 für Windows, SPSS, Chicago, Illinois</td>
</tr>
</tbody>
</table>

Setting

<table>
<thead>
<tr>
<th>Land</th>
<th>Italien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zentrum</td>
<td>Universitätsklinik Rom</td>
</tr>
<tr>
<td>Zeitraum der Untersuchung</td>
<td>Juli 2001 bis Januar 2002</td>
</tr>
<tr>
<td>(Bei allen Patienten) angewendete Verfahren/Untersuchungen</td>
<td>CTC unmittelbar vor Koloskopie</td>
</tr>
</tbody>
</table>

Diagnose

<table>
<thead>
<tr>
<th>Referenzverfahren</th>
<th>Koloskopie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untersuchtes Verfahren</td>
<td>CTC</td>
</tr>
</tbody>
</table>

| Technische Charakteristika des Geräts/der Geräte (Auswertungsmodus) | CTC: Mehrschicht-Spiral-CT-Scanner (Somatom Plus 4 Volume Zoom; Siemens, Erlangen, Deutschland) Gantry-Rotationszeit: 0,5 sek Kollimation: 4 x 2,5 mm Effektive Schichtdicke: 3,0 mm Rekonstruktionsintervall: 1,0 mm Tischgeschwindigkeit: 17,5 mm/sek Röhrenspannung: 140 kV Röhrenstrom: (effektiv)10 mAs Pitch: 0,875 Bildrekonstruktion: mit Standardalgorithmus (Kernel B20, smooth) Kontrastmittel: 20 mg Butylscopolamin IV (Buscopan; Boehringer, Ingelheim, Deutschland) Software: Vitrea 2.6; Vital Images, Minneapolis, Minnesota). Bildgebung: 2-D, 3-D bei Abnormalität | Koloskopie: Standard-Videokoloskop (CV-1; Olympus, Tokio, Japan) |

| Darmvorbereitung | CTC: 24 h vor der Untersuchung: Polyethyenglykol-Elektrotylösung (Isocolan; Bracco, Mailand, Italien), aufgelöst in 4 l Wasser |

| Lage bei der Untersuchung | Bauch- und Rückenlage |

Fortsetzung Tabelle 43: Iannaccone et al. 2003

Detection of Colorectal Lesions: Lower-Dose Multi-Detector Row Helical CT Colonography Compared with Conventional Colonoscopy

<table>
<thead>
<tr>
<th>Untersuchte Personen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl</td>
</tr>
<tr>
<td>Geschlecht</td>
</tr>
<tr>
<td>Alter</td>
</tr>
</tbody>
</table>

Charakterisierung

- Patienten wurden eingeschlossen wegen:
 - Screenings: 31
 - Positive okkulter Bluttests: 52
 - Polypen in der Anamnese: 37
 - Kolorektale Karzinome in der Anamnese: 18
 - Hämatochezie: 12
 - Eisenmangelanämie: 8

Auftraggeber/Sponsoren

K. A.

Wesentliche Ergebnisse

Verfahrensvergleich

CTC-Ergebnisse (bezogen auf Polypen):
- Karzinome: 22/22 (100 % Sensitivität)
- Polypen: 52/74 (70,3 % Sensitivität, 95-%-Konfidenzintervall: 59,6–80,9 %)
- Polypen ≥ 10 mm: 13/13 (100 % Sensitivität)
- Polypen 6–9 mm: 20/24 (83,3 % Sensitivität, 95-%-Konfidenzintervall: 67,3–99,4 %)
- Polypen < 5 mm: 19/37 (51,3 % Sensitivität, 95-%-Konfidenzintervall: 34,5–68,2 %)

- Positiver prädiktiver Wert: 94,1 % (95-%-Konfidenzintervall: 87,4–100 %)
- Negativer prädiktiver Wert: 97,71 % (95-%-Konfidenzintervall: 94,5–100 %)

Nicht auswertbare Befunde Beschrieben

Komplikationen

Angegeben: keine Komplikationen

Diskussion von Biasformen

Nein

Schlussfolgerung(en) der Autoren

Niedrigdosis-Mehrfachdetektor-CTC ermöglicht eine Reduktion der Strahlenbelastung, wobei die Sensitivitätswerte zur Entdeckung von kolorektalen Karzinom und Polypen größer als 6 cm

Quelle: Iannaccone et al. 2003, ÖBIG-FP-eigene Darstellung

Tabelle 44: Munirkishnan et al. 2003

Prospective Study Comparing Multislice CT Colonography with Colonoscopy in the Detection of Colorectal Cancer and Polyps

<table>
<thead>
<tr>
<th>Forschungsfrage(n)/Studienziel(e)</th>
<th>Vergleich der Mehrschicht-CTC mit der Koloskopie in der Detektion von kolorektalen Polypen und kolorektalem Karzinom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methodik</td>
<td>Prospektiv</td>
</tr>
</tbody>
</table>
| Einschluss-/Ausschlusskriterien | Einschlusskriterien:
 - Änderungen der Stuhlgewohnheiten
 - Rektale Blutungen
 - Bauchschmerzen
 - Gewichtsverlust
 - Raumforderung im Rektum

Ausschlusskriterien:
- Drohender Darmverschluss
- Schwangerschaft
- Untersuchungen mit Bariumsulfat innerhalb der letzten 14 Tage

Rekrutierung

Ärztliche Zuweisung zur Institution

CT = Computertomografie. CTC = Computertomografie-Koloskopie. K. A. = keine Angaben. kV = Kilovolt. mAs = Milliamperesekunden. min = Minuten. 2-D = Zweidimensional. 3-D = Dreidimensional.

Quelle: Munikrishnan et al. 2003, ÖBIG-FP-eigene Darstellung
Fortsetzung Tabelle 44: Munikrishnan et al. 2003

<table>
<thead>
<tr>
<th>Prospective Study Comparing Multislice CT Colonography with Colonoscopy in the Detection of Colorectal Cancer and Polyps[^16]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verblindung</td>
</tr>
<tr>
<td>Statistische Analyse</td>
</tr>
</tbody>
</table>

Setting

<table>
<thead>
<tr>
<th>Land</th>
<th>Großbritannien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zentrum</td>
<td>Universitätsklinik London</td>
</tr>
<tr>
<td>Zeitraum der Untersuchung</td>
<td>Juni 2000 bis Dezember 2001</td>
</tr>
</tbody>
</table>

Technische Charakteristika des Geräts/der Geräte (Auswertungsmodus)

<table>
<thead>
<tr>
<th>Gerätetyp Koloskopie:</th>
<th>Olympus CF 230 Liter, Olympus Optical Co., Tokio, Japan; Pentrax EC 3830 LK, Asahi Optical Co. Ltd., Tokio, Japan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gerätetyp CTC: Mehrschicht-CT</td>
<td>Somatom Volume Zoom 4, Siemens, Deutschland</td>
</tr>
<tr>
<td>Bildgebung:</td>
<td>2-D, 3-D beim Abnormalitätsabklärung</td>
</tr>
<tr>
<td>Scanparameter:</td>
<td>Kollimation: 1 mm, Rekonstruktionsintervall: 1 mm, Tischgeschwindigkeit: variabel</td>
</tr>
<tr>
<td>Röhrenstrom:</td>
<td>120 bis 200 mA</td>
</tr>
<tr>
<td>Röhrenspannung:</td>
<td>120 kV</td>
</tr>
<tr>
<td>Matrix:</td>
<td>512 x 512</td>
</tr>
<tr>
<td>Software: Siemens-Workstation mit der Möglichkeit der multiplanaren und 3-D-Bildbearbeitung</td>
<td></td>
</tr>
<tr>
<td>KM:</td>
<td>intravenöses KM</td>
</tr>
</tbody>
</table>

Darmvorbereitung

<table>
<thead>
<tr>
<th>Am Tag vor der Untersuchung:</th>
<th>2 Packungen Picolax (Sodium Picosulphate, Ferring Pharmaceuticals, Berkshire, UK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Am Tag der Untersuchung:</td>
<td>20 mg Buscopan intravenös (Hyoscine-N-Butylbromid, Boehringer Ingelheim, Spanien)</td>
</tr>
<tr>
<td>CTC: zusätzliches Einbringen von Raumluft</td>
<td></td>
</tr>
<tr>
<td>KM: intravenöses KM (100 bis 130 ml Omnipaque, Iohexol, Amersham, UK)</td>
<td></td>
</tr>
</tbody>
</table>

Lage bei der Untersuchung

| Bauch- und Rückenlage |

Befundung/Erfahrung der Ärzte

| CTC: zwei Radiologen, Konsensfindung; keine Angaben zur Erfahrung |
| Koloskopie: k. A. |

Untersuchte Personen

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geschlecht</td>
<td>45 Männer, 35 Frauen</td>
</tr>
<tr>
<td>Alter</td>
<td>68 (29 bis 83) Jahre</td>
</tr>
</tbody>
</table>

Charakterisierung

| Symptomatische Patienten: |
| Änderungen der Stuhlgewohnheiten: 46 (58 %) |
| Rektale Blutungen: 38 (48 %) |
| Bauchschmerzen: 24 (30 %) |
| Gewichtsverlust: 9 (11 %) |
| Raumforderung im Rektum: 19 (24 %) |

Auftraggeber/Sponsoren

| K. A. |

[^16]: Fortsetzung Tabelle 44: Munikrishnan et al. 2003
Effektivität und Effizienz der CT-Koloskopie im Vergleich zur konventionellen Koloskopie in der Darmkrebsdiagnose und -früherkennung

Fortsetzung Tabelle 44: Munikrishnan et al. 2003

<table>
<thead>
<tr>
<th>Wesentliche Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verfahrensvergleich</td>
</tr>
<tr>
<td>Bei der Koloskopie ergaben sich bei 26 Patienten keinerlei Auffälligkeiten. Die MDCT war bei 34 Patienten unauffällig.</td>
</tr>
<tr>
<td>a) Analyse aller erkannten Erkrankungen:</td>
</tr>
<tr>
<td>Bei insgesamt 29 Patienten wurde ein KRK diagnostiziert, in 33 Fällen wurden Polypen, in 16 Fällen eine Divertikulose und in 3 Fällen eine Kolitis festgestellt.</td>
</tr>
<tr>
<td>Die MDCT identifizierte 28 der 29 KRK und vermisste ein sigmoidales Karzinom. Die Sensitivität beträgt 97 %, die Spezifität 98 %, der PPV 96 % und der NPV 98 %.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Erkrankung</th>
<th>Koloskopie</th>
<th>MDCT Sensitivität (%)</th>
<th>MDCT Spezifität (%)</th>
<th>PPV (%)</th>
<th>NPV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krebs</td>
<td>29</td>
<td>97</td>
<td>98</td>
<td>96</td>
<td>98</td>
</tr>
<tr>
<td>Polypen</td>
<td>33</td>
<td>74</td>
<td>96</td>
<td>88</td>
<td>90</td>
</tr>
<tr>
<td>Divertikulose</td>
<td>16</td>
<td>31</td>
<td>98</td>
<td>79</td>
<td>85</td>
</tr>
<tr>
<td>Kolitis</td>
<td>3</td>
<td>67</td>
<td>100</td>
<td>100</td>
<td>99</td>
</tr>
</tbody>
</table>

b) Analyse aller durch die MDCT erkannten Polypen:

<table>
<thead>
<tr>
<th>Polypen</th>
<th>Koloskopie</th>
<th>MDCT</th>
<th>Detektion Sensitivität per Polyp (%)</th>
<th>Detektion Sensitivität per Patient (%)</th>
<th>Detektion Spezifität per Patient (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alle Polypen</td>
<td>33</td>
<td>25</td>
<td>76</td>
<td>74</td>
<td>96</td>
</tr>
<tr>
<td>≥ 10 mm</td>
<td>12</td>
<td>12</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>6–9 mm</td>
<td>6</td>
<td>5 (1)</td>
<td>83</td>
<td>80</td>
<td>99</td>
</tr>
<tr>
<td>≤ 5 mm</td>
<td>15</td>
<td>8 (7)</td>
<td>53</td>
<td>36</td>
<td>97</td>
</tr>
</tbody>
</table>

Andere Ergebnisse

Polypenevaluierung

Nicht auswertbare Befunde

Die Koloskopie war in 18 Fällen (22 %) aufgrund unzureichender Darmvorbereitung (7 Fälle), technischer Schwierigkeiten (4 Fälle), okklusiven kolorektalen Krebses (5 Fälle) oder sigmoidaler Divertikelstruktur (2 Fälle) mangelhaft und wurde aus der Auswertung ausgeschlossen. Die MDCT war in 4 Fällen (5 %) aufgrund fäkaler Rückstände (3 Fälle) sowie der nicht möglichen Speicherung von Raumluft (1 Fall) nicht erfolgreich.

Komplikationen

Keine Komplikationen bei beiden Untersuchungen

Diskussion von Biasformen

K. A.

Schlussfolgerung(en) der Autoren

Die Effektivität der MDCT in der Erkennung von kolorektalem Karzinom und Polypen ≥ 6 mm ist ähnlich der Effektivität der Koloskopie. Die MDCT erlaubt allerdings die klinische Einstufung von kolorektalen Karzinomen, stellt die Gesamtläänge des Darmes bei vorhandenen obstruktiven Karzinomen dar, was in der Koloskopie nicht möglich wäre. Die MDCT kann auch andere Ursachen für bestehende Symptome im Unterleib identifizieren.

¹ Falsch positiv bei der MDCT.

Quelle: Munikrishnan et al. 2003, ÖBIG-FP-eigene Darstellung
Tabelle 45: Ginnerup Pedersen et al. 2003

Colonoscopy and Multidetector-Array Computed-Tomographic Colonography: Detection Rates and Feasibility

<table>
<thead>
<tr>
<th>Forschungsfrage(n)/ Studienziel(e)</th>
<th>Vergleich der Leistungsfähigkeit von CTC mit der Koloskopie bei der Detektion von Polyphen und Raumforderungen ≥ 6 mm bei ambulanten Patienten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methodik</td>
<td></td>
</tr>
<tr>
<td>Studiendesign</td>
<td>Prospektiv</td>
</tr>
<tr>
<td>Einschluss-/Ausschlusskriterien</td>
<td></td>
</tr>
<tr>
<td>Einschlusskriterien:</td>
<td></td>
</tr>
<tr>
<td>• Rektale Blutungen</td>
<td></td>
</tr>
<tr>
<td>• Änderungen der Stuhlgewohnheiten</td>
<td></td>
</tr>
<tr>
<td>• Bauchschmerzen</td>
<td></td>
</tr>
<tr>
<td>• Gewichtsverlust</td>
<td></td>
</tr>
<tr>
<td>• Anämie</td>
<td></td>
</tr>
<tr>
<td>• Rektale Schleimabsonderung</td>
<td></td>
</tr>
<tr>
<td>• Abdominaler Tumor</td>
<td></td>
</tr>
<tr>
<td>Ausschlusskriterien:</td>
<td></td>
</tr>
<tr>
<td>• Tumor ist weniger als 10 cm vom analen Rand entfernt</td>
<td></td>
</tr>
<tr>
<td>• Klinische oder radiologische Anzeichen für eine Obstruktion</td>
<td></td>
</tr>
<tr>
<td>• Verdacht auf aktive chronisch entzündliche Darmerkrankung</td>
<td></td>
</tr>
<tr>
<td>• Kolostomie</td>
<td></td>
</tr>
<tr>
<td>• Verdacht auf Darmischämie</td>
<td></td>
</tr>
<tr>
<td>• Schwere Herz-, Lungen- oder Niereninsuffizien</td>
<td></td>
</tr>
<tr>
<td>• Schwangerschaft</td>
<td></td>
</tr>
<tr>
<td>• Fehlen der Einverständniserklärung</td>
<td></td>
</tr>
<tr>
<td>• Logistisch: CTC mit Koloskopie konnte nicht arrangiert werden</td>
<td></td>
</tr>
<tr>
<td>Rekrutierung</td>
<td>K. A.</td>
</tr>
<tr>
<td>Verblindung</td>
<td>CTC: Arzt war gegenüber Patientenkategorie, Indikation für die Untersuchung und endoskopischer Befunde verblindet.</td>
</tr>
<tr>
<td></td>
<td>Koloskopie: Ärzte waren gegenüber Befunde der CTC verblindet; die Indikation für die Untersuchung sowie alle relevanten Informationen für eine gute Betreuung der Patienten waren ihnen bekannt</td>
</tr>
<tr>
<td>Statistische Analyse</td>
<td>Sensitivität, Spezifität, 95-%-Konfidenzintervalle</td>
</tr>
<tr>
<td>Setting</td>
<td></td>
</tr>
<tr>
<td>Land</td>
<td>Dänemark</td>
</tr>
<tr>
<td>Zentrum</td>
<td>Universitätsklinik Aarhus</td>
</tr>
<tr>
<td>Zeitraum der Untersuchung</td>
<td>K. A.</td>
</tr>
<tr>
<td>(Bei allen Patienten) angewendete Verfahren/-Untersuchungen</td>
<td>Mehrzeilen-CTC 20–120 min vor Koloskopie (außer bei 4 Patienten, deren Koloskopie an einem anderen Krankenhaus durchgeführt wurde)</td>
</tr>
<tr>
<td>Diagnose</td>
<td></td>
</tr>
<tr>
<td>Referenzverfahren</td>
<td>Zweitkoloskopie bei Befunddifferenz zwischen Erstkoloskopie und CTC</td>
</tr>
<tr>
<td>Untersuchtes Verfahren</td>
<td>CTC</td>
</tr>
</tbody>
</table>
Fortsetzung Tabelle 45: Ginnerup Pedersen et al. 2003

Colonoscopy and Multidetector-Array Computed-Tomographic Colonography: Detection Rates and Feasibility

<table>
<thead>
<tr>
<th>Technische Charakteristika des Geräts/der Geräte (Auswertungsmodus)</th>
<th>CTC: Marconi M x 8000 Scanner (Marconi Medical Systems Inc., Cleveland, Ohio, USA)</th>
<th>Koloskopie: Olympus CF-Q160/L I Videendoskop (Olympus Optical Col Ltd., Tokio, Japan)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schichtdicke: 3,2 mm (4x 2,5 mm) Increment: 1,6 mm Röhrenstrom: 70 mAs Röhrenspannung: 120 kV Rotationszeit: 0,5 sek Pitch: 1,25 Standardauflösung Strahlungsdosis: effektiv 6 mSv Workstation: MxView (marconi Medical Systems Inc., Cleveland, Ohio, USA) Bildgebung: 2-D, 3-D zur Abklärung</td>
<td></td>
<td>Intravenös Pethidin und Midazolam</td>
</tr>
</tbody>
</table>

Darmvorbereitung

24-Stunden-Regime mit Fleet Phospho-Soda und Bisacodyl. 1 mg Glucagon intravenös vor der Untersuchung. Einblasen von Raumluft zur Toleranzgrenze.

Lage bei der Untersuchung

Bauch- und Rückenlage

Befundung/Erfahrung der Ärzte

CTC: Prüfarzt, der bereits ca. 100 CTC interpretiert hatte

Zeit für Laden, Analyse und Rekonstruktion der Bilder (median): 14 min (6–26 min; basierend auf 50 Patienten)

Koloskopie:

- 42/148 Patienten untersuchten 4 Endoskopiker, die ≥ 1.000 Koloskopien durchgeführt hatten
- 53/148: 5 Endoskopiker (100–499)
- 7/1487: 1 Endoskopiker (50–99)
- 3/148: 2 Endoskopiker (0–49, unter Aufsicht eines Chirurgen)
- 4/148: 4 Endoskopiker (Erfahrung unbekannt)

Un tersuchte Personen

Anzahl	148
Geschlecht	71 Männer, 77 Frauen
Alter	Median: 60 Jahre (25 bis 86 Jahre)

Charakterisierung

- Polypen-/Karzinom-Kontrolluntersuchung: 51 %
- Rektale Blutung: 17 %
- Änderung der Darmgewohnheiten: 14 %
- Bauchschmerzen: 9 %
- KRK, präoperative Koloskopie: 5 %
- Rektale Schleimabsonderung, Gewichtsverlust, Anämie: 4 %

Auftraggeber/Sponsoren

Danish Medical Research Council, Danish Institute for Health Technology Assessment, Forskningsinitiativet Bezirk Aarhus; Danish Cancer Foundation, Kliniske Forskningsenhed Aarhus; A. P. Møller og Hustru Chastine McKinney Møllers Fond til Almene Formål.

Wesentliche Ergebnisse

<table>
<thead>
<tr>
<th>Verfahrensvergleich</th>
<th>Sensitivitätswerte (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polypen</td>
<td>CTC</td>
</tr>
<tr>
<td>Alle Polypen</td>
<td>81</td>
</tr>
<tr>
<td>≥ 20 mm</td>
<td>100</td>
</tr>
<tr>
<td>10–19 mm</td>
<td>83</td>
</tr>
<tr>
<td>6–9 mm</td>
<td>71</td>
</tr>
</tbody>
</table>
Fortsetzung Tabelle 45: Ginnerup Pedersen et al. 2003

<table>
<thead>
<tr>
<th>Colonoscopy and Multidetector-Array Computed-Tomographic Colonography: Detection Rates and Feasibility(^9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andere Ergebnisse</td>
</tr>
<tr>
<td>Spezifität der CTC ab 6 mm: 97 %</td>
</tr>
<tr>
<td>11 Karzinome werden mit beiden Methoden erfasst</td>
</tr>
<tr>
<td>Nicht auswertbare Befunde</td>
</tr>
<tr>
<td>Inkomplette Koloskopie bei 13 Patienten</td>
</tr>
<tr>
<td>Bei 36 Patienten CTC nicht zufriedenstellend</td>
</tr>
<tr>
<td>Komplikationen</td>
</tr>
<tr>
<td>K. A.</td>
</tr>
<tr>
<td>Diskussion von Biasformen</td>
</tr>
<tr>
<td>Nein</td>
</tr>
<tr>
<td>Schlussfolgerung(en) der Autoren</td>
</tr>
<tr>
<td>CTC und Koloskopie zeigen ähnliche Sensitivitäten bei der Detektion von polypoiden Läsionen ab einer Größe von 6 mm. Bei der CTC sind jedoch mehr Patienten unvollständig untersucht.</td>
</tr>
</tbody>
</table>

Quelle: Pedersen et al. 2003, ÖBIG-FP-eigene Darstellung

Tabelle 46: Pineau et al. 2003

<table>
<thead>
<tr>
<th>Virtual Colonoscopy Using Oral Contrast Compared with Colonoscopy for the Detection of Patients with Colorectal Polyps(^26)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forschungsfrage(n)/Studienziel(e)</td>
</tr>
<tr>
<td>Methodik</td>
</tr>
<tr>
<td>Studiendesign Prospektiv</td>
</tr>
<tr>
<td>Einschluss-/Ausschlusskriterien</td>
</tr>
<tr>
<td>Einschlusskriterien:</td>
</tr>
<tr>
<td>• ≥ 35 Jahre alt</td>
</tr>
<tr>
<td>• Koloskopie klinisch indiziert (Screening bei durchschnittlichem Risiko für KRK, pathologischer Screeningtest, Eisenmangelanämie, gastrointestinal Symptomatik) und geplant</td>
</tr>
<tr>
<td>Ausschlusskriterien:</td>
</tr>
<tr>
<td>• Genetisches Polyposissyndrom bekannt oder in der Familienanamnese</td>
</tr>
<tr>
<td>• Vorangegangene Kolonoperation</td>
</tr>
<tr>
<td>• Verdacht auf chronisch entzündliche Darmerkrankung</td>
</tr>
<tr>
<td>• Darmverschluss</td>
</tr>
<tr>
<td>• Diverticulitis</td>
</tr>
<tr>
<td>• Intoleranz gegenüber Darmvorbereitung</td>
</tr>
<tr>
<td>• Schwangerschaft</td>
</tr>
<tr>
<td>• Schwere Herzinsuffizienz</td>
</tr>
<tr>
<td>• Chronische Niereninsuffizienz</td>
</tr>
<tr>
<td>Rekrutierung Geplante Koloskopie</td>
</tr>
<tr>
<td>Statistische Analyse Sensitivität, Spezifität, 95-%-Konfidenzintervalle, positiver prädiktiver Wert, negativer prädiktiver Wert. Software: PC-SAS Version 8.0 (SAS Institute, Cary, North Carolina)</td>
</tr>
<tr>
<td>Setting</td>
</tr>
<tr>
<td>Land USA</td>
</tr>
<tr>
<td>Zentrum Universitätsklinik Winston-Salem</td>
</tr>
<tr>
<td>Zeitraum der Untersuchung K. A.</td>
</tr>
<tr>
<td>(Bei allen Patienten) angewendete Verfahren/-Untersuchungen CTC und innerhalb von 3 Stunden Koloskopie</td>
</tr>
</tbody>
</table>
Fortsetzung Tabelle 46: Pineau et al. 2003

<table>
<thead>
<tr>
<th>Virtual Colonoscopy Using Oral Contrast Compared with Colonoscopy for the Detection of Patients with Colorectal Polyps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnose</td>
</tr>
<tr>
<td>Referenzverfahren</td>
</tr>
<tr>
<td>Untersuchtes Verfahren</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Technische Charakteristika des Geräts/der Geräte (Auswertungsmodus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTC: Single-slice helical CT scan (Hi-Speed Advantage; GE Medical Systems, Milwaukee, Wisconsin)</td>
</tr>
<tr>
<td>Kollimation: 5 mm</td>
</tr>
<tr>
<td>Tischgeschwindigkeit: 10 mm/sek</td>
</tr>
<tr>
<td>Pitch 2 : 1</td>
</tr>
<tr>
<td>Röhrenstrom: 200 mAs</td>
</tr>
<tr>
<td>Röhrenspannung: 120 KVp</td>
</tr>
<tr>
<td>Bildmatrix: 512 x 512</td>
</tr>
<tr>
<td>Rekonstruktionsintervall: 1 mm</td>
</tr>
<tr>
<td>Koloskopie: Standard-Videokoloskop (Olympus Incorporation, Melville, New York)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Darmvorbereitung</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Lage bei der Untersuchung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bauch- und Rückenlage</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Befundung/Erfahrung der Ärzte</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTC: ein zertifizierter Radiologe</td>
</tr>
<tr>
<td>Koloskopie: ein zertifizierter Gastroenterologe</td>
</tr>
<tr>
<td>Jeweils keine Angaben zur Erfahrung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Untersuchte Personen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl</td>
</tr>
<tr>
<td>Geschlecht</td>
</tr>
<tr>
<td>Alter</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Charakterisierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Familiengeschichte mit kolorektalem Karzinom</td>
</tr>
<tr>
<td>≥ 1 Verwandter ersten Grades 40 (19,5 %)</td>
</tr>
<tr>
<td>Entfernter Verwandter: 12 (5,9 %)</td>
</tr>
<tr>
<td>Keine: 153 (74,6 %)</td>
</tr>
</tbody>
</table>

Indikation für Koloskopie:
- Pathologischer Screeningtest: 36 (17,6 %)
- Screening: 48 (23,4 %)
- Nachkontrolle: 28 (13,7 %)
- Symptome: 93 (46,4 %)
 - K. Hämatochezie: 29,3 %
 - L. Änderungen der Stuhl gewohnheiten: 40,5 %
 - M. Eisenmangelanämie: 5,2 %
 - Anderes (Bauchschmerzen, Gewichtsverlust): 25,0 %

<table>
<thead>
<tr>
<th>Auftraggeber/Sponsoren</th>
</tr>
</thead>
<tbody>
<tr>
<td>K. A.</td>
</tr>
</tbody>
</table>
Fortsetzung Tabelle 46: Pineau et al. 2003

Virtual Colonoscopy Using Oral Contrast Compared with Colonoscopy for the Detection of Patients with Colorectal Polyps

Wesentliche Ergebnisse

<table>
<thead>
<tr>
<th>Verfahrensvergleich</th>
<th>Detektionsrate CTC pro Patient (Angaben in %, Konfidenzintervall in Klammern)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polypengröße (mm)</td>
<td>Sensitivität</td>
</tr>
<tr>
<td>≥ 10</td>
<td>90,0 (76,9–100)</td>
</tr>
<tr>
<td>≥ 6</td>
<td>84,4 (73,9–95,0)</td>
</tr>
<tr>
<td>Alle</td>
<td>61,8 (51,7–71,9)</td>
</tr>
</tbody>
</table>

Andere Ergebnisse

| Sensitivität der CTC zur Detektion individueller kolorektaler Läsionen |
|--------------------------|-----------------|-----------------|-----------------|
| Polypengröße (mm) | Sensitivität (Angaben in %, Konfidenzintervall in Klammern) |
| ≥ 10 | 77,8 (62,1–93,5) |
| ≥ 6 | 76,0 (66,3–85,7) |
| ≥ 1 | 46,5 (39,9–53,7) |

Nicht auswertbare Befunde

Bei der CTC alle Befunde verwertbar

Koloskopie: k. A.

Komplikationen

K. A.

Diskussion von Biasformen

Ja

Schlussfolgerung(en) der Autoren

Die CTC zeigt hohe Sensitivität und Spezifität bei der Identifizierung von Patienten mit signifikanten kolorektalen Läsionen. Der hohe negative prädiktive Wert könnte die Anzahl von negativen Screeningkoloskopien reduzieren. Zukünftige Studien sind notwendig, um klinisch akzeptable Grenzwerte für die Größe von Läsionen und das geeignete Zeitintervall bis zur Kontrolle bei Läsionen unter diesem Grenzwert zu bestimmen.

Quelle: Pineau et al. 2003, ÖBIG-FP-eigene Darstellung

Tabelle 47: Thomeer et al. 2003

Stool Tagging Applied in Thin-slice Multidetector Computed Tomography Colonography

Forschungsfrage(n)/ Studienziel(e)

Genauigkeit von hochauflösender Mehrzeilen-CTC mit Stuhlmarkierung im Vergleich zur Koloskopie

Methodik

<table>
<thead>
<tr>
<th>Studiendesign</th>
<th>K. A.</th>
</tr>
</thead>
</table>

Einschluss-/Ausschlusskriterien

Einschlusskriterien:
- Patienten zwischen 20 und 80 Jahren
- Einverständniserklärung

Ausschlusskriterien:
- Verdacht auf chronisch entzündliche Darmerkrankungen
- Schwangerschaft

Rekrutierung

Ärztliche Zuweisung zur Koloskopie.

Verblindung

K. A.

Statistische Analyse

Sensitivität, Spezifität, positiv prädiktiver Wert, negativ prädiktiver Wert, Kappa-Wert.
Fortsetzung Table 47: Thomeer et al. 2003

Stool Tagging Applied in Thin-slice Multidetector Computed Tomography Colonography

<table>
<thead>
<tr>
<th>Setting</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Land</td>
<td>Belgien</td>
</tr>
<tr>
<td>Zentrum</td>
<td>Universitätskliniken (Belgien, Rom)</td>
</tr>
<tr>
<td>Zeitraum der Untersuchung</td>
<td>Januar 2000-August 2001</td>
</tr>
<tr>
<td>(Bei allen Patienten) angewendete Verfahren/-Untersuchungen</td>
<td>CTC und direkt darauffolgende Koloskopie</td>
</tr>
</tbody>
</table>

Diagnose

<table>
<thead>
<tr>
<th>Referenzverfahren</th>
<th>Koloskopie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untersuchtes Verfahren</td>
<td>CTC</td>
</tr>
</tbody>
</table>

Technische Charakteristika des Geräts/der Geräte (Auswertungsmodus)

<table>
<thead>
<tr>
<th>CTC:</th>
<th>Standard Endoskope (CF-100 MI, CF-130, CF-Q140; Olympus Optical Company, Hamburg, Deutschland). Intravenös Pethidin, Midazolam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mehrzeilen-CT (Volume Zoom; Siemens, Erlangen, Deutschland)</td>
<td></td>
</tr>
<tr>
<td>Rotationszeit: 0,5 sek</td>
<td></td>
</tr>
<tr>
<td>Kollimation: 1 mm</td>
<td></td>
</tr>
<tr>
<td>Tischvorschub: 7 mm/sek</td>
<td></td>
</tr>
<tr>
<td>Pitch: 1,75</td>
<td></td>
</tr>
<tr>
<td>Rekonstruktionsintervall: 0,8 mm</td>
<td></td>
</tr>
<tr>
<td>Röhrenstrom: 60 mA (effektiv)</td>
<td></td>
</tr>
<tr>
<td>Röhrenspannung: 120 kV</td>
<td></td>
</tr>
<tr>
<td>Errechnung der Strahlendosis mit WinDOSE (Wellhöfer, Deutschland).</td>
<td></td>
</tr>
<tr>
<td>Bildgebung: 2-D (1700 HU, Level: -300 HU; 630 HU, level 80 HU); 3-D zur Abklärung</td>
<td></td>
</tr>
</tbody>
</table>

Darmvorbereitung

<table>
<thead>
<tr>
<th>3-5 l Elektrolytlösung über 2 Stunden (n = 130)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3-5 l Polyethylenglykol (Klean Prep; Norgine, Belgien) (n = 20)</td>
<td></td>
</tr>
<tr>
<td>Jodiertes Kontrastmittel: (Telebrix Gastro; Guerbet, Frankreich) 30 ml/l Elektrolytlösung.</td>
<td></td>
</tr>
<tr>
<td>Darmvorbereitung wurde als ausreichend erachtet, wenn die Patienten klare Flüssigkeit von sich gaben. Dies war nach 2-5 Stunden erreicht. Direkt vor CTC: 20 mg Buscopan (Boehringer Ingelheim, Belgien) intravenös Einblasen von CO2 zur Toleranzgrenze</td>
<td></td>
</tr>
</tbody>
</table>

Lage bei der Untersuchung

| Rücken- und Bauchlage | |

Befundung/Erfahrung der Ärzte

<table>
<thead>
<tr>
<th>CTC: 2 Ärzte: 1 hatte Einzelschicht-CTC bei ca. 30 Patienten interpretiert und keine nennenswerte Erfahrung mit Mehrschicht-CTC; der andere Einzel- und Mehrschicht-CTC bei ca. 50 Patienten. Eine typische Interpretation dauerte 15 min.</th>
<th></th>
</tr>
</thead>
</table>

Untersuchte Personen

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geschlecht</td>
<td>88 Männer, 62 Frauen</td>
</tr>
<tr>
<td>Alter</td>
<td>Ø 58 (20-80 Jahre)</td>
</tr>
</tbody>
</table>

Charakterisierung

<table>
<thead>
<tr>
<th>Indikationen zur Koloskopie: Primäres kolorektales Screening: 14,8 %</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sekundäres kolorektales Screening: 42,3 %</td>
<td></td>
</tr>
<tr>
<td>Nachuntersuchung bei Polyposis: 26,7 %</td>
<td></td>
</tr>
<tr>
<td>Nachuntersuchung bei kolorektalem Tumor: 15,6 %</td>
<td></td>
</tr>
<tr>
<td>Blutungen: 16,3 %</td>
<td></td>
</tr>
<tr>
<td>Bauchschmerzen: 11,1 %</td>
<td></td>
</tr>
<tr>
<td>Änderungen der Suhlgewohnheiten: 4,4 %</td>
<td></td>
</tr>
<tr>
<td>Primäre Tumorsuche: 4,4 %</td>
<td></td>
</tr>
<tr>
<td>Gewichtsverlust: 2,2 %</td>
<td></td>
</tr>
<tr>
<td>Anämie: 0,7 %</td>
<td></td>
</tr>
<tr>
<td>Andere Gründe: 3,7</td>
<td></td>
</tr>
</tbody>
</table>

Auftraggeber/Sponsoren

K. A.
Wesentliche Ergebnisse

<table>
<thead>
<tr>
<th>Verfahrensvergleich</th>
<th>Sensitivität und positiver prädiktiver Wert der CTC von beiden Befunden (Angaben in %)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Patienten 1–75 (Befunder 1/2)</td>
</tr>
<tr>
<td>Polypengröße 5–9 mm</td>
<td></td>
</tr>
<tr>
<td>Sensitivität</td>
<td>54,2/58,3</td>
</tr>
<tr>
<td>Positive prädiktiver Wert</td>
<td>65/77,8</td>
</tr>
<tr>
<td>Polypengröße 10–25 mm</td>
<td></td>
</tr>
<tr>
<td>Sensitivität</td>
<td>50/50</td>
</tr>
<tr>
<td>Positive prädiktiver Wert</td>
<td>100/100</td>
</tr>
</tbody>
</table>

Andere Ergebnisse

- Negativer prädiktiver Wert:
 - Befunder 1: 95 %
 - Befunder 2: 97,5 %
- Befundervariabilität: kappa = 0,68 (im Lauf der Studie Steigerung von 0,63 auf 0,71)

Nicht auswertbare Befunde

CTC: alle auswertbar
Koloskopie: wegen obstruktiver Tumoren bei 5 Patienten inkomplett

Komplikationen

K. A.

Diskussion von Biasformen

Nein

Schlussfolgerung(en) der Autoren

Die Kombination von Stuhlmarkierung und hochauflösender CTC erzielt eine hohe Sensitivität und Spezifität, insbesondere bei Polypen ab 10 mm Größe.

CO₂ = Kohlenstoffdioxid. CTC = Computertomografie-Koloskopie. HU = Hounsfield Units. IV = intravenös. k. A. = keine Angaben. kV = Kilovolt. mA = Milliampere. mEq = Milliequivalent. Min. = Minuten. n = Anzahl. 2-D = Zweidimensional. 3-D = Drei-dimensional.

Quelle: ÖBIG-FP-eigene Darstellung, Thomeer et al. 2003
8.4.3 Tabellen zur ökonomischen Bewertung

In allen Tabellen wird die Bezeichnung „Koloskopie“ für die konventionelle Koloskopie verwendet.

Tabelle 48: Hassan et al. 2007

<table>
<thead>
<tr>
<th>Beschreibung</th>
<th>Anmerkungen bei mangelnder Qualität oder Transparenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fragestellung</td>
<td>Klinische Effektivität und Effizienz des Screenings mit CTC im Vergleich zum Screening mit Koloskopie bzw. mit Sigmoidoskopie bei einer Population mit durchschnittlichem Dickdarmkrebsrisiko</td>
</tr>
<tr>
<td>Land/Region</td>
<td>Italien</td>
</tr>
<tr>
<td>Jahr</td>
<td>2007</td>
</tr>
<tr>
<td>Perspektive</td>
<td>Offensichtlich staatlicher Gesundheitsdienst Italien</td>
</tr>
<tr>
<td>Intervention</td>
<td>CTC-Screening</td>
</tr>
<tr>
<td>Verglichene Alternativen (Untersuchungs- und Behandlungspfade)**</td>
<td>1. Kein Screening</td>
</tr>
<tr>
<td></td>
<td>2. 10-Jahres-Screening mit Sigmoidoskopie</td>
</tr>
<tr>
<td></td>
<td>3. 10-Jahres-Screening mit CTC</td>
</tr>
<tr>
<td></td>
<td>4. 10-Jahres-Screening mit Koloskopie</td>
</tr>
<tr>
<td></td>
<td>Bei allen Alternativen: ggf. Krebsbehandlung</td>
</tr>
<tr>
<td></td>
<td>Bei 2. bis 4.: Follow-up mit Untersuchungen im 5-Jahres-Abstand bei allen Patienten mit Läsionen</td>
</tr>
<tr>
<td>Studiendesign</td>
<td>Kostenwirksamkeitsanalyse</td>
</tr>
<tr>
<td>Ergebnisparameter</td>
<td>Direkte Kosten pro gerettetes Lebensjahr</td>
</tr>
<tr>
<td>Eingeschlossene Kosten</td>
<td>• Untersuchungskosten1 CTC, Sigmoidoskopie, Koloskopie, Polypektomie</td>
</tr>
<tr>
<td></td>
<td>• Kosten der Komplikationen (Blutung, Kolonperforation)</td>
</tr>
<tr>
<td></td>
<td>• Kosten der Krebsbehandlung (getrennt nach frühes und spätes Stadium)2</td>
</tr>
<tr>
<td>Eingeschlossene Gesundheitseffekte</td>
<td>• Komplikationen durch Blutung (Koloskopie, Polypektomie) und Kolonperforation (Koloskopie, Polypektomie, Sigmoidoskopie)</td>
</tr>
<tr>
<td></td>
<td>• Verhinderte Dickdarmkrebsfälle</td>
</tr>
<tr>
<td></td>
<td>• Dickdarmkrebssterblichkeit (getrennt nach frühes und spätes Stadium)</td>
</tr>
<tr>
<td>Quelle(n) klinische und epidemiologische Daten</td>
<td>Literatur</td>
</tr>
<tr>
<td>Quelle(n) Kostendaten</td>
<td>• Untersuchungskosten CTC: Tarife der regionalen Gesundheitsbehörden für öffentliche Krankenhäuser</td>
</tr>
<tr>
<td></td>
<td>• Untersuchungskosten Koloskopie und Sigmoidoskopie: Literatur (adaptiert)</td>
</tr>
<tr>
<td></td>
<td>• Kosten der Komplikationen: Literatur (adaptiert)</td>
</tr>
<tr>
<td></td>
<td>• Kosten der Krebsbehandlung: Literatur (adaptiert)</td>
</tr>
<tr>
<td>Modellrechnung</td>
<td>Markovmodell</td>
</tr>
<tr>
<td>Diskontrate</td>
<td>3 %</td>
</tr>
<tr>
<td>Population (Simulation)</td>
<td>• Anzahl: 100.000</td>
</tr>
<tr>
<td></td>
<td>• Alter zum Ausgangszeitpunkt: 50 Jahre</td>
</tr>
<tr>
<td></td>
<td>• Dickdarmkrebsrisiko: durchschnittlich</td>
</tr>
<tr>
<td>Modellzeitraum</td>
<td>30 Jahre</td>
</tr>
<tr>
<td>Sensitivitätsanalyse</td>
<td>• Deterministische Sensitivitätsanalyse: Variation der meisten, jedoch offenbar nicht aller Parameter (etwa nicht der Komplikationsraten sowie deren Kosten, Kosten der Krebsbehandlung)</td>
</tr>
</tbody>
</table>
Fortsetzung Tabelle 48: Hassan et al. 2007

<table>
<thead>
<tr>
<th>Colon cancer prevention in Italy: Cost-effectiveness analysis with CT colonography and endoscopy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weitere Annahmen</td>
</tr>
<tr>
<td>• Ca. 10 % der Dickdarmkrebsfälle entstehen de novo</td>
</tr>
<tr>
<td>• Jährliche Übergangsraten von Polypen ≤ 5 mm zu Polypen 6–9 mm: 2 %; von Polypen 6–9 mm zu Polypen ≥ 10 mm: 2 %; von Polypen ≥ 10 mm zu Krebs: 3 %</td>
</tr>
<tr>
<td>• Compliance zum Erstscreeningtest 65 %, Compliance zu Folgeuntersuchungen 80 % (Patienten, die einmal nicht compliant sind, bleiben es)</td>
</tr>
<tr>
<td>• Alle Patienten mit diagnostizierten Polypen werden zur Koloskopie weitergeleitet (außer bei Koloskopie als Erstuntersuchung)</td>
</tr>
</tbody>
</table>

| **Auftraggeber/Sponsoren** | Keine angegeben |
| **Interessenkonflikte** | Keine |

| **Ergebnisse** |
| **Modellrechnung** |
| **Anzahl Komplikationen:** |
| • Simoidoskopie: 624 |
| • CTC: 706 |
| • Koloskopie: 1.491 |

Verhinderte Dickdarmkrebsfälle:

- Simoidoskopie: 31,8 %
- CTC: 38,2 %
- Koloskopie: 40,9 %

Reduktion der Dickdarmkrebssterblichkeit:

- Simoidoskopie: 33,5 %
- CTC: 40 %
- Koloskopie: 43 %

Gewonnene Lebensjahre:

- Simoidoskopie: 2.945
- CTC: 3.589
- Koloskopie: 3.821

Inkrementelle Kostenwirksamkeit:

- Alle Screeningverfahren kostensparend im Vergleich zu „kein Screening“:
 - Simoidoskopie: –579 Euro
 - CTC: –1.274 Euro
 - Koloskopie: –281 Euro
- Simoidoskopie wird von CTC dominiert
- Koloskopie vs. Simoidoskopie: 721 Euro
- Koloskopie vs. CTC: 15.091 Euro

| **Ergebnisse Sensitivitätsanalyse** |
| **Einflussreiche Parameter (Details siehe unten):** |
| • Sensitivität der CTC |
| • Compliance beim Erstscreening |
| • Untersuchungskosten |
| • Zeitabstand des Screenings |

Inkrementelle Kostenwirksamkeit:

- Koloskopie vs. CTC:
 - Dominant bei Erhöhung der Kosten für CTC von 100,90 Euro auf 148 Euro
 - 5.157 Euro bei Verringerung der Sensitivität der CTC für Polypen ≥ 10 mm um 85 % auf 79 %
- CTC vs. Koloskopie:
 - 76.453 Euro, wenn CTC-Screening alle fünf Jahre
 - Dominant bei Verringerung der Compliance zur Koloskopie von 65 % auf 80 %

Keine transparente Dokumentation. Offensichtlich wurden jene Parameter (vgl. links) als wichtig identifiziert, die die Rangfolge der Verfahren bei Wirksamkeit bzw. Kostenwirksamkeit verändert haben.
Fortsetzung Tabelle 48: Hassan et al. 2007

Colon cancer prevention in Italy: Cost-effectiveness analysis with CT colonography and endoscopy

| Schlussfolgerungen (Autoren) | CTC erscheint kosteneffektiver als Koloskopie, da ca. 50 % der Kosten für die Entfernung von kleineren Polypen, die von der CTC nicht gefunden werden, eingespart werden. Das Ergebnis ist jedoch sensitiv auf Variationen der CTC-Sensitivität oder auch der Compliance. | Schlussfolgerung nur unter der (unwahrscheinlichen) Annahme konsistent, dass die Kosten pro gewonnenes Lebensjahr bei einem Screeningprogramm nicht höher als 15.000 Euro sein dürfen. | |

2 Operation, 3 Koloskopien, 2 Thoraxröntgen, 5 ärztliche Untersuchungen, 3 Blutuntersuchungen (mit Tumormarkern), 2 abdominelle Ultraschalluntersuchungen, wenn notwendig Radio-/Chemotherapie und palliative Behandlung.

4 Darstellung im Text nicht ganz klar.

CTC = Computertomografie-Koloskopie. QALY = Quality adjusted life year. USA = United States of America (dt.: Vereinigte Staaten von Amerika).

Quelle: Hassan et al. 2007, ÖBIG-FP-eigene Darstellung

Tabelle 49: Vijan et al. 2007

The cost-effectiveness of CT colonography in screening for colorectal neoplasia

<table>
<thead>
<tr>
<th>Beschreibung</th>
<th>Anmerkungen bei mangelnder Qualität oder Transparenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fragestellung</td>
<td>Kosteneffektivität von 2-D- und 3-D-CTC als Screeningtest für kolorektale Neubildungen</td>
</tr>
<tr>
<td>Land/Region</td>
<td>USA</td>
</tr>
<tr>
<td>Jahr</td>
<td>2007</td>
</tr>
<tr>
<td>Perspektive</td>
<td>Drittzahler im Gesundheitswesen</td>
</tr>
<tr>
<td>Intervention</td>
<td>2-D- und 3-D-CTC-Screening</td>
</tr>
</tbody>
</table>

Vergleichene Alternativen (Untersuchungs- und Behandlungspfade)

1. Kein Screening
2. 5-Jahres-Screening mit 2-D-CTC
3. 10-Jahres-Screening mit 2-D-CTC
4. 5-Jahres-Screening mit 3-D-CTC
5. 10-Jahres-Screening mit 3-D-CTC
6. Jährlicher Okkultbluttest
7. 5-Jahres-Screening mit Sigmoidoskopie
8. Jährlicher Okkultbluttest + 5-Jahres-Screening mit Sigmoidoskopie
9. 10-Jahres-Screening mit Koloskopie
Bei allen Alternativen: ggf. Krebsbehandlung
Bei 2. bis 8.: Follow-up-Koloskopie im 5-Jahres-Abstand bei allen Patienten mit Polypen ≥ 10 mm oder multiplen Polypen

Studiendesign | Kostenwirksamkeitsanalyse |

Ergebnisparameter | Direkte Kosten pro gerettetes Lebensjahr |

Eingeschlossene Kosten

- Untersuchungskosten CTC, Okkultbluttest, Sigmoidoskopie, Koloskopie, Polypektomie inklusive Biopsie
- Kosten Komplikationen (Kolonperforation)
- Kosten Krebsbehandlung (getrennt nach lokalen, regionalen und disseminierten Karzinomen)

Keine Aufschlüsselfelung der Komplikations- und Behandlungskosten

Eingeschlossene Gesundheitseffekte

- (Sterblichkeitsrate bei) Komplikationen durch Kolonperforation
- Dickdarmkrebsrisiko
- Dickdarmkrebssterblichkeit

Kein Versuch einer Berechnung der Kosten pro QALY.

Siehe Text (Abschnitt 6.5.6.1.1)
Fortsetzung Tabelle 49: Vijan et al. 2007

<table>
<thead>
<tr>
<th>The cost-effectiveness of CT colonography in screening for colorectal neoplasia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quelle(n) klinische und epidemiologische Daten</td>
</tr>
</tbody>
</table>
| Quelle(n) Kostendaten | • Untersuchungskosten CTC, Okkultbluttest, Sigmoideoskopie, Koloskopie, Polypektomie: Tarife von Medicare 2003¹
• Kosten Komplikationen: Literatur (inflationiert auf 2003)
• Kosten Krebsbehandlung: Literatur (adaptiert) |
| Modellrechnung | Markovmodell |
| Diskontrate | 3 % |
| Population (Simulation) | • Anzahl: 100.000
• Alter zum Ausgangszeitpunkt: 50 Jahre
• Dickdarmkrebsrisiko: durchschnittlich |
| Modellzeitraum | 50 Jahre (Screening bis zu einem Alter von 80) |
| Sensitivitätsanalyse | • Deterministische Sensitivitätsanalyse: univariate Variation aller Parameter (mit Ausnahme der aus statistischen Daten errechneten Werte zu Dickdarmkrebsinzidenz und -mortalität), bivariate Variation der einflussreichsten Parameter, Bandbreiten wo möglich aus der Literatur bezogen
• Monte-Carlo-Simulation: für alle kontinuierlich verteilten Parameter Normalverteilung |
| Weitere Annahmen | • Keine De-novo-Entstehung von Dickdarmkrebs (ausschließlich aus Polypen ≥ 10 mm bzw. mit villösen Eigenschaften bzw. hochgradiger Dysplasie)
• Gutartige Polypen werden innerhalb von 10 Jahren Karzinome
• Patienten mit disseminierten Karzinomen werden auf jeden Fall innerhalb von 1 Jahr diagnostiziert (auch ohne Screening)
• Prävalenz hyperplastischer Polypen altersabhängig definiert (von 20 % bei Alter 50 bis 15 % bei Alter 80)
• Compliance zum Erst-Screeningtest 60 %, Compliance zu Folgeuntersuchungen 75 %
• Alle Patienten mit diagnostizierten Polypen werden zur Koloskopie und ggf. Polypektomie/Biopsie weitergeleitet (außer bei Koloskopie als Erstuntersuchung) |
| Auftraggeber/Sponsoren | Unterstützungen vom National Cancer Institute und einem Veterans Affairs Advanced Career Development Award. |
| Interessenkonflikte | Ein Autor ist Berater bei verschiedenen relevanten Herstellerfirmen. |
Fortsetzung Tabelle 49: Vijan et al. 2007

The cost-effectiveness of CT colonography in screening for colorectal neoplasia

<table>
<thead>
<tr>
<th>Ergebnisse Modellrechnung</th>
<th>Dickdarmkrebsrisiko(^2):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Kein Screening: 5,6 %</td>
</tr>
<tr>
<td></td>
<td>• 2-D-CTC (5 J.): 1,6 %</td>
</tr>
<tr>
<td></td>
<td>• 2-D-CTC (10 J.): 2,7 %</td>
</tr>
<tr>
<td></td>
<td>• 3-D-CTC (5 J.): 1,3 %</td>
</tr>
<tr>
<td></td>
<td>• 3-D-CTC (10 J.): 2,3 %</td>
</tr>
<tr>
<td></td>
<td>• Okkultbluttest: 3,8 %</td>
</tr>
<tr>
<td></td>
<td>• Sigmodioskopie (5 J.): 3,1 %</td>
</tr>
<tr>
<td></td>
<td>• Okkultbluttest + Sigmodioskopie (5 J.): 2,2 %</td>
</tr>
<tr>
<td></td>
<td>• Koloskopie (10 J.): 1,2 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dickdarmkrebssterblichkeit:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Kein Screening: 2,1 %</td>
</tr>
<tr>
<td>• 2-D-CTC (5 J.): 0,5 %</td>
</tr>
<tr>
<td>• 2-D-CTC (10 J.): 0,9 %</td>
</tr>
<tr>
<td>• 3-D-CTC (5 J.): 0,4 %</td>
</tr>
<tr>
<td>• 3-D-CTC (10 J.): 0,8 %</td>
</tr>
<tr>
<td>• Okkultbluttest: 1,2 %</td>
</tr>
<tr>
<td>• Sigmodioskopie (5 J.): 1,2 %</td>
</tr>
<tr>
<td>• Okkultbluttest + Sigmodioskopie (5 J.): 0,6 %</td>
</tr>
<tr>
<td>• Koloskopie (10 J.): 0,4 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lebenserwartung(^3):</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Kein Screening: 17,1215 J.</td>
</tr>
<tr>
<td>• 2-D-CTC (5 J.): 17,1738 J.</td>
</tr>
<tr>
<td>• 2-D-CTC (10 J.): 17,1536 J.</td>
</tr>
<tr>
<td>• 3-D-CTC (5 J.): 17,1766 J.</td>
</tr>
<tr>
<td>• 3-D-CTC (10 J.): 17,1655 J.</td>
</tr>
<tr>
<td>• Okkultbluttest: 17,1504 J.</td>
</tr>
<tr>
<td>• Sigmodioskopie (5 J.): 17,1528 J.</td>
</tr>
<tr>
<td>• Okkultbluttest + Sigmodioskopie (5 J.): 17,1719 J.</td>
</tr>
<tr>
<td>• Koloskopie (10 J.): 17,1746 J.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inkrementelle Kostenwirksamkeit:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Gegenüber kein Screening:</td>
</tr>
<tr>
<td>• 2-D-CTC (5 J.): 14.290 USD</td>
</tr>
<tr>
<td>• 2-D-CTC (10 J.): 17.280 USD</td>
</tr>
<tr>
<td>• 3-D-CTC (5 J.): 13.460 USD</td>
</tr>
<tr>
<td>• 3-D-CTC (10 J.): 8.150 USD</td>
</tr>
<tr>
<td>• Okkultbluttest: 5.360 USD</td>
</tr>
<tr>
<td>• Sigmodioskopie (5 J.): 23.830 USD</td>
</tr>
<tr>
<td>• Okkultbluttest + Sigmodioskopie (5 J.): 18.000 USD</td>
</tr>
<tr>
<td>• Koloskopie (10 J.): 8.090 USD</td>
</tr>
<tr>
<td>• 3-D-CTC dominant gegenüber 2-D-CTC</td>
</tr>
<tr>
<td>• 3-D-CTC (5 J.) gegenüber</td>
</tr>
<tr>
<td>• Okkultbluttest: 22.400 USD</td>
</tr>
<tr>
<td>• Sigmodioskopie (5 J.): CTC dominant</td>
</tr>
<tr>
<td>• Okkultbluttest + Sigmodioskopie (5 J.): CTC ist dominant</td>
</tr>
<tr>
<td>• Koloskopie (10 J.): 156.000 USD</td>
</tr>
<tr>
<td>• 3-D-CTC (10 J.) gegenüber</td>
</tr>
<tr>
<td>• Okkultbluttest: 13480 USD</td>
</tr>
<tr>
<td>• Sigmodioskopie (5 J.): CTC dominant</td>
</tr>
<tr>
<td>• Okkultbluttest + Sigmodioskopie (5 J.) gegenüber</td>
</tr>
<tr>
<td>• 3-D-CTC (10 J.): 84.160 USD</td>
</tr>
<tr>
<td>• Koloskopie (10 J.) gegenüber</td>
</tr>
<tr>
<td>• 3-D-CTC (10 J.): Koloskopie schwach dominant</td>
</tr>
</tbody>
</table>
Fortsetzung Tabelle 49: Vjian et al. 2007

<table>
<thead>
<tr>
<th>Ergebnisse Sensitivitätsanalyse</th>
<th>Einflussreiche Parameter (Details s. u.):</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Bei 3-D-CTC (5 J.) vs. Koloskopie (10 J.):</td>
<td></td>
</tr>
<tr>
<td>o Kosten beider Untersuchungen</td>
<td></td>
</tr>
<tr>
<td>o Sensitivität der 3-D-CTC für Polypen ≥ 10 mm</td>
<td></td>
</tr>
<tr>
<td>o Compliance mit Erstscreening und Follow-up-Koloskopie (bei Vorliegen von Polypen)</td>
<td></td>
</tr>
<tr>
<td>• Bei 3-D-CTC (10 J.) vs. Koloskopie (10 J.):</td>
<td></td>
</tr>
<tr>
<td>o Compliance mit Follow-up-Koloskopie (bei Vorliegen von Polypen)</td>
<td></td>
</tr>
</tbody>
</table>

Inkrementelle Kostenwirksamkeit:

• Gegenüber kein Screening:
 o Bei allen Alternativen alle Annahmen robust
 o Meisten Alternativen kostensparend bei hohen Kosten für Krebsbehandlung (~ zw. 60.000 und 80.000 USD)

• 2-D-CTC gegenüber Koloskopie (10 J.):
 o Kosteneffektiv nur unter extremen Annahmen

• Koloskopie (10 J.) gegenüber 3-D-CTC (5 J.):
 o Dominant bei Reduktion der Sensitivität der 3-D-CTC (für Polypen ≥ 10 mm) von 91 % auf 83 %
 o Dominant bei Erhöhung der Compliance mit Erstscreening von 60 % auf 80 %
 o Dominant bei Reduktion der Compliance mit Follow-up-Koloskopie von 75 % auf 50 %

• 3-D-CTC (5 J.) gegenüber Koloskopie (10 J.):
 o Unter 50.000 USD bei Reduktion der Kosten CTC von 559 USD auf 450 USD
 o Dominant bei Reduktion der Kosten CTC von 559 USD auf 400 USD
 o Unter 50.000 USD bei Erhöhung der Kosten Koloskopie von 653 USD auf 820 USD
 o Dominant bei Erhöhung der Kosten Koloskopie von 653 USD auf 950 USD
 o 48.900 USD bei Erhöhung der Compliance mit Erstscreening von 60 % auf 40 %
 o 33.210 USD bei Erhöhung der Compliance mit Follow-up-Koloskopie von 75 % auf 95 %
 o 73.990 USD bei Erhöhung der Sensitivität der 3-D-CTC (für Polypen ≥ 10 mm) von 91 % auf 99 %

• Koloskopie (10 J.) gegenüber 3-D-CTC (10 J.):
 o 107.530 USD bei Erhöhung der Compliance rate für Follow-up-Koloskopie von 75 % auf 95 %

Monte-Carlo-Simulation:

3-D-CTC (5 J.) vs. Koloskopie (10 J.): 100.000 USD (40.000 USD) bei 37,9 % (14 %) der Simulationen

Schlussfolgerungen (Autoren)

1 Bei CTC als CT-Scan des Abdomens und des Beckens. Die Kosten schließen neben den ärztlichen Tarifen auch Fixkosten ein.
2 Lebenszeitrisiko für Dickdarmkrebs.
3 Zum Alter 50, Werte mit 3 % diskontiert.
Quelle: Vjian et al. 2007, ÖBIG-FP-eigene Darstellung
Tabelle 50: Ladabaum et al. 2005

<table>
<thead>
<tr>
<th>Projekter national impact of colorectal cancer screening on clinical and economic outcomes and health services demand178, 266</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beschreibung</td>
</tr>
<tr>
<td>Anmerkungen bei mangelnder Qualität oder Transparenz</td>
</tr>
<tr>
<td>Fragestellung</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Land/Region</td>
</tr>
<tr>
<td>Jahr</td>
</tr>
<tr>
<td>Perspektive</td>
</tr>
<tr>
<td>Intervention</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Studiendesign</td>
</tr>
<tr>
<td>Ergebnisparameter</td>
</tr>
<tr>
<td>Eingeschlossene Kosten</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Eingeschlossene Gesundheitseffekte</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Quelle(n) klinische und epidemiologische Daten</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Fortsetzung Tabelle 50: Ladabaum et al. 2005

<table>
<thead>
<tr>
<th>Modellrechnung</th>
<th>Markovmodell</th>
<th>--</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diskontrate</td>
<td>3 %</td>
<td>--</td>
</tr>
</tbody>
</table>

Population (Simulation)
- Anzahl: 100.000
- Alter zum Ausgangszeitpunkt: 50 Jahre
- Dickdarmkrebsrisiko: durchschnittlich

Modellzeitraum
- 50 Jahre (Screening und Nachbeobachtung bis zu einem Alter von 80)

Sensitivitätsanalyse
- Keine. Für die Berechnung der nationalen Auswirkungen (erste Fragestellung) wurden die Kosten der Krebsbehandlung variiert (Reduktion um 25 % aufgrund einer A-priori-Annahme)

Weitere Annahmen
- Ca. 15 % der Dickdarmkrebsfälle entstehen de novo
- Jährliche Übergangsraten von kleinen (< 10 mm) zu großen (≥ 10 mm) Polypen: 1,5 %; von großen Polypen zu Krebs: 5 %
- Patienten mit disseminierten Karzinomen werden auf jeden Fall innerhalb eines Jahres diagnostiziert (auch ohne Screening)
- 15 % der Personen haben hyperplastische Polypen
- Compliance: 100 % bzw. gleiche Compliance für alle Screeningstrategien [für die Berechnung der nationalen Auswirkungen (erste Fragestellung) wurde eine Screeningcompliance von 75 % angenommen]
- Alle Patienten mit diagnostizierten Polypen werden zur Koloskopie und ggf. Polypektomie/Biopsie weitergeleitet (außer bei Koloskopie als Erstuntersuchung)

Auftraggeber, Sponsoren
- Unterstützung vom National Cancer Institute

Interessenkonflikte
- Keine angegeben

Ergebnisse Modellrechnung zur Kosteneffektivität

<table>
<thead>
<tr>
<th>Lebenserwartung</th>
<th>Kein Screening: 18,686 J.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Okkultbluttest: 18,742 J.</td>
<td></td>
</tr>
<tr>
<td>Sigmoidoskopie: 18,734 J.</td>
<td></td>
</tr>
<tr>
<td>Okkultbluttest + Sigmoidoskopie: 18,749 J.</td>
<td></td>
</tr>
<tr>
<td>Koloskopie: 18,748 J.</td>
<td></td>
</tr>
<tr>
<td>DNA-Stuhltest base case: 18,720 J.</td>
<td></td>
</tr>
<tr>
<td>DNA-Stuhltest optimized: 18,748 J.</td>
<td></td>
</tr>
<tr>
<td>CTC base case: 18,741 J.</td>
<td></td>
</tr>
<tr>
<td>CTC Pickhardt: 18,747 J.</td>
<td></td>
</tr>
</tbody>
</table>

| Inkrementelle Kostenwirksamkeit: |
| Gegenüber kein Screening: |
| Okkultbluttest: 8.100 USD |
| Sigmoidoskopie: 17.300 USD |
| Okkultbluttest + Sigmoidoskopie: 18.700 USD |
| Koloskopie: 18.800 USD |
| DNA-Stuhltest base case: 73.200 USD |
| DNA-Stuhltest optimized: 31.000 USD |
| CTC base case: 28.700 USD |
| CTC Pickhardt: 26.600 USD |
Projektierter nationale Einfluss des kolorektalen Krebscreenings auf klinische und ökonomische Ergebnisse und Gesundheitserfordernisse

Ergebnisse/Schlußfolgerungen	–	–
------------------------------	––	––
(Autoren)	(Schlußfolgerungen beziehen sich auf die erste Fragestellung)	–

1. Die Tabelle gibt nur die Ergebnisse und Annahmen zur zweiten Fragestellung wieder, der Fokus der Studie liegt allerdings auf der ersten Fragestellung.
2. Kosten der CTC den Kosten der Koloskopie gleichgesetzt.
3. Zum Alter 50, Werte mit 3 % diskontiert.
5. Basierend auf verschiedenen Literaturquellen.

CTC = Computertomografie-Koloskopie. DNA = Desoxyribonukleinsäure. J. = Jahre. k. nähere A. = keine näheren Angaben.
Quelle: Ladabaum et al. 2005, ÖBIG-FP-eigene Darstellung

Tabelle 51: Heitmann et al. 2005

<table>
<thead>
<tr>
<th>Beschreibung</th>
<th>Anmerkungen bei mangelnder Qualität oder Transparenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fragestellung</td>
<td>–</td>
</tr>
<tr>
<td>Land/Region</td>
<td>Kanada</td>
</tr>
<tr>
<td>Jahr</td>
<td>2005</td>
</tr>
<tr>
<td>Perspektive</td>
<td>Drittzahler im Gesundheitssystem</td>
</tr>
<tr>
<td>Intervention</td>
<td>CTC-Screening</td>
</tr>
<tr>
<td>Vergleichene Alternativen (Untersuchungs- und Behandlungspfade)</td>
<td>1. Screening mit CTC</td>
</tr>
<tr>
<td></td>
<td>2. Screening mit Koloskopie</td>
</tr>
<tr>
<td></td>
<td>Bei allen Alternativen: ggf. Krebsbehandlung</td>
</tr>
<tr>
<td>Studiendesign</td>
<td>Kostenwirksamkeitsanalyse</td>
</tr>
<tr>
<td>Ergebnisparameter</td>
<td>Direkte Kosten pro gerettetes Lebensjahr</td>
</tr>
<tr>
<td></td>
<td>Einbeziehung von indirekten Kosten in der Sensitivitätsanalyse, allerdings nur hinsichtlich des Untersuchungszeitpunkts</td>
</tr>
<tr>
<td>Eingeschlossene Kosten</td>
<td>• Untersuchungskosten CTC¹, Koloskopie², Polypektomie⁶</td>
</tr>
<tr>
<td></td>
<td>• Kosten Komplikationen (Kolonperforation, Blutung)</td>
</tr>
<tr>
<td></td>
<td>• Kosten Krebsbehandlung (nur lokale Karzinome)</td>
</tr>
<tr>
<td></td>
<td>Keine Aufschlüsselung der Kosten für Krebsbehandlung</td>
</tr>
<tr>
<td>Eingeschlossene Gesundheitseffekte</td>
<td>• (Sterblichkeitsrate bei) Komplikationen durch Blutung und Kolonperforation</td>
</tr>
<tr>
<td></td>
<td>• Dickdarmkrebsrisiko</td>
</tr>
<tr>
<td></td>
<td>• Dickdarmkrebssterblichkeit</td>
</tr>
<tr>
<td>Quelle(n) klinische und epidemiologische Daten</td>
<td>Literatur</td>
</tr>
<tr>
<td></td>
<td>Für CTC wurden nur Studien herangezogen, die das Verfahren der segmentierten Entblindung verwenden, für Koloskopie sowohl Studien mit segmentierter Entblindung als auch mit Back-to-back-Koloskopie⁶.</td>
</tr>
<tr>
<td>Quelle(n) Kostendaten</td>
<td>• Untersuchungskosten CTC, Koloskopie, Polypektomie: lokale Erstattungstarife bzw. aus lokalen Kostenstudien</td>
</tr>
<tr>
<td></td>
<td>• Kosten der Komplikationen: retrospektive Erhebung aus lokalen Krankenhausdaten (Calgary)</td>
</tr>
<tr>
<td></td>
<td>• Kosten der Krebsbehandlung: Literatur (2003)</td>
</tr>
<tr>
<td>Modellrechnung</td>
<td>Entscheidungsberatungsanalyse</td>
</tr>
</tbody>
</table>

Jahresangabe für Kosten fehlt
Cost-effectiveness of computerized tomographic colonography versus colonoscopy for colorectal cancer screening

<table>
<thead>
<tr>
<th>Diskontrate</th>
<th>3 %</th>
<th>3 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population (Simulation)</td>
<td>Anzahl: 100,000</td>
<td>Alter zum Ausgangszeitpunkt: 50 Jahre</td>
</tr>
</tbody>
</table>

Modellzeitraum
- 3 Jahre ([einmaliges] Screening inklusive Polypektomie und Komplikationsbehandlung, zuzüglich Folgekosten bei Krebs]).

Sensitivitätsanalyse
- Univariate Variation aller Modellparameter mit Ausnahme der Spezifität der Koloskopie (Wert: 100 %) und der Kosten für Krebsbehandlung; Bandbreiten wo möglich aus der Literatur bezogen bzw. teilweise begründet
- Einbeziehung der durch die Untersuchungen verursachten indirekten Kosten

Weitere Annahmen
- Anteil der adenomatösen Polypen an allen Polypen 61 % bei Polypen 6–9 mm und 67 % bei Polypen ≥ 10 mm
- Compliance: kein Unterschied zwischen den Alternativen (base case)
- Nur bei Polypen > 5 mm in der CTC folgt Koloskopie (und ggf. Polypektomie)
- Alle aufgrund übersehener Polypen entstehenden Karzinome werden im Frühstadium identifiziert und behandelt

Auftraggeber/Sponsoren
- Unterstützungen von der Alberta Heritage Foundation for Medical Research

Interessenkonflikte
- Keine

Ergebnisse Modellrechnung

Komplikationen
- **Anzahl Perforationen:**
 - CTC: 46
 - Koloskopie: 123
- **Todesfälle aufgrund Perforation:**
 - CTC: 2,25
 - Koloskopie: 6,03

Dickdarmkrebssterblichkeit
- **CTC:** 4,75
- **Koloskopie:** 0,64

Inkrementelle Kostenwirksamkeit
- **Koloskopie dominant gegenüber CTC**

Keine Berechnung des Vergleichs zur Alternative „kein Screening“ (siehe oben)
Effektivität und Effizienz der CT-Koloskopie im Vergleich zur konventionellen Koloskopie in der Darmkrebsdiagnose und -früherkennung

Fortsetzung Tabelle 51: Heitmann et al. 2005

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Testgüte CTC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Dickdarmkrebsrisiko aufgrund übersehener Polypen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Perforationsrisiko und -mortalität</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Untersuchungskosten</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Unterschiedliche Compliance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inkrementelle Kostenwirksamkeit:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• CTC gegenüber Koloskopie:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>o 220.000 CAD bei Erhöhung der Sensitivität CTC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>für Polypen (≥ 10 mm) von 71 % auf 94 % und Spezifität CTC von 84 % auf 80 % (Werte aus der Literatur)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>o 42.900 CAD bei Senkung des 3-Jahres-Risikos für Dickdarmkrebs aufgrund übersehener Polypen von 0,9 auf 0 % (6–9 mm) bzw. von 1,5 auf 0,5 % (≥ 10 mm)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>o 2.130 CAD bei Erhöhung des Perforationsrisikos bei (diagnostischer) Koloskopie von 0,09 auf 0,2 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>o 18.200 CAD bei Erhöhung des Risikos eines Todes durch Perforation von 4,9 % auf 14 % (Wert aus der Literatur)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>o 711.000 CAD, wenn die Compliance bei CTC um 50 % besser ist als bei Koloskopie (base case: 0 %)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Koloskopie gegenüber CTC:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>o 956.000 CAD, wenn Koloskopie indirekte Kosten von 1,5 Werktagen verursacht, CTC einen Ausfall von 0,5 Werktagen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>o Nicht mehr dominant ab Kosten für CTC-Untersuchung von 422 CAD (base case: 445 CAD)</td>
<td></td>
</tr>
<tr>
<td>Schlussfolgerungen (Autoren)</td>
<td>CTC erscheint nicht kosteneffektiv für das Dickdarmkrebscreening in Kanada, hat jedoch Einsatzpotenzial in Zentren, wo das Komplikationsrisiko bei Koloskopie hoch ist bzw. bei Patienten mit hohem operativen Risiko. Forschungsbedarf besteht hinsichtlich des tatsächlichen Ausmaßes der indirekten Kosten beim Screening.</td>
<td>–</td>
</tr>
</tbody>
</table>

Bei CTC geschätzte Kosten anhand des Provincial Common Procedure Liste Catalog in Calgary für eine Untersuchung mit grundsätzlich zwei- und dreidimensionaler Darstellung in unklaren Fällen. Kapitalkosten wurden hier nicht eingeschlossen, da davon ausgegangen wurde, dass die (zusätzlichen) CT-Scans mit vorhandener Infrastruktur durchgeführt werden können.

2 Erstattung für Arzt, Konsultation, (sonstiges) Personal, Einwegartikel, Medikation, Gerätereinigung, Abschreibung.
3 Zwei Koloskopien hintereinander durch zwei Endoskopisten (verblindet).
4 Anzahl pro 100.000 gescreenten Patienten.
5 Anzahl pro 100.000 gescreenten Patienten, Werte mit 3 % diskontiert.

CAD = Kanadischer Dollar. CT = Computertomografie. CTC = Computertomografie-Koloskopie.

Quelle: Heitmann et al. 2005, ÖBIG-FP-eigene Darstellung
Tabelle 52: Ladabaum et al. 2004

<table>
<thead>
<tr>
<th>Beschreibung</th>
<th>Anmerkungen bei mangelnder Qualität oder Transparenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fragestellung</td>
<td>–</td>
</tr>
<tr>
<td>Kosteneffizienz der CTC im Vergleich zur Koloskopie und kritische Variablen, die die Entscheidung beeinflussen, welches Verfahren zum Screening heranzuziehen ist; potenzielle Auswirkungen auf nationaler Ebene.</td>
<td>–</td>
</tr>
<tr>
<td>Land/Region</td>
<td>USA</td>
</tr>
<tr>
<td>Jahr</td>
<td>2004</td>
</tr>
<tr>
<td>Perspektive</td>
<td>Drittzahler im Gesundheitssystem</td>
</tr>
<tr>
<td>Intervention</td>
<td>CTC-Screening</td>
</tr>
</tbody>
</table>
Bei 2. bis 7.: Follow-up-Koloskopie im 5-Jahres-Abstand bei allen Patienten mit entdeckten Polypen | Siehe Text (Abschnitt 6.5.6.1.1) |
| Studiendesign | Kostenwirksamkeitsanalyse |
| Ergebnisparameter | Direkte Kosten pro gerettetes Lebensjahr |
| Eingeschlossene Kosten | Keine genaue Aufschlüsselung einzelner Kosteninputs, insbesondere bei Komplikations- und Behandlungskosten |
| • Untersuchungskosten CTC, Koloskopie, Polypektomie bzw. Biopsie • Kosten Komplikationen bei Endoskopie (keine nähere Angaben). • Kosten Krebsbehandlung (getrennt nach lokalen, regionalen und disseminierten Karzinomen) | – |
| Eingeschlossene Gesundheitseffekte | – |
| • (Sterblichkeit bei) Komplikationen durch Koloskopie bzw. Sigmoidoskopie (keine näheren Angaben). • Sterblichkeitsrate durch Krebsbehandlung • Dickdarmkrebsinzidenz (getrennt nach lokalem, regionalem und verbreitetem Krebs) • Dickdarmkrebssterblichkeit | – |
| Quelle(n) klinische und epidemiologische Daten | Keine systematische Literatursuche (und -selektion) dokumentiert |
| Literature, statistische Daten (USA) zu Dickdarmkrebsinzidenz und -mortalität und zur allgemeinen Mortalität | Keine systematische Literatursuche (und -selektion) dokumentiert |
| Quelle(n) Kostendaten | Literaturquellen teilweise aus sehr unterschiedlichen und länger zurückliegenden Jahren |
| • Untersuchungskosten CTC, Koloskopie, Polypektomie: Tarife von Medicare (vermutlich 2003), Literatur • Kosten der Komplikationen: Literatur (inflationiert auf 2003) • Kosten der Krebsbehandlung: Literatur (inflationiert auf 2003) | – |
| Modellrechnung | Markovmodell |
| Diskontrate | 3 % |
| Population (Simulation) | – |
| • Anzahl: 100.000 • Alter zum Ausgangszeitpunkt: 50 Jahre • Dickdarmkrebsrisiko: durchschnittlich | – |
| Modellzeitraum | 50 Jahre (Screening und Nachbeobachtung bis zu einem Alter von 80) |
Fortsetzung Tabelle 52: Ladabaum et al. 2004

| Sensitivitätsanalyse | Deterministische Sensitivitätsanalyse: univariate Variation aller Parameter (mit Ausnahme der aus statistischen Daten errechneten Werte zu Dickdarmkrebsinzidenz und -mortalität), bivariate Variation der einflussreichsten Parameter, Bandbreiten (teilweise) aus der Literatur bezogen
Berücksichtigung einer Reduktion der Lebensqualität und der Entstehung von indirekten Kosten durch die Untersuchung inklusive Darmvorbereitung
Variation des Dickdarmkrebsrisikos der Population |
|-----------------|--|

| Weitere Annahmen | Ca. 15 % der Dickdarmkrebsfälle entstehen de novo
Jährliche Übergangsrate von kleinen (< 10 mm) zu großen (≥ 10 mm) Polypen: 1,5 %; von großen Polypen zu Krebs: 5 %
Patienten mit disseminiertem Krebs werden auf jeden Fall innerhalb eines Jahres diagnostiziert (auch ohne Screening)
15 % der Personen haben hyperplastische Polypen
Compliance: 100 % für alle Screeningstrategien
Alle Patienten mit diagnostizierten Polypen werden zur Koloskopie und ggf. Polypektomie/Biopsie weitergeleitet (außer bei Koloskopie als Erstuntersuchung) |
|-----------------|--|

<table>
<thead>
<tr>
<th>Auftraggeber/Sponsoren</th>
<th>Keine angegeben</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Interessenkonflikte</th>
<th>Keine angegeben</th>
</tr>
</thead>
</table>
Fortsetzung Tabelle 52: Ladabaum et al. 2004

<table>
<thead>
<tr>
<th>Ergebnisse Modellrechnung</th>
<th>Dickdarmkrebsfälle:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kein Screening: 5.920</td>
</tr>
<tr>
<td></td>
<td>Koloskopie: 1.580</td>
</tr>
<tr>
<td></td>
<td>CTC Cotton*: 2.910</td>
</tr>
<tr>
<td></td>
<td>CTC base case*: 2.230</td>
</tr>
<tr>
<td></td>
<td>CTC Pickhardt*: 1.780</td>
</tr>
</tbody>
</table>

Anteil der auf Dickdarmkrebs zurückzuführenden Todesfälle an allen Todesfällen:
- Kein Screening: 2,4 %
- Koloskopie: 0,5 %
- CTC Cotton*: 1,0 %
- CTC base case*: 0,7 %
- CTC Pickhardt*: 0,5 %

Lebenserwartung³:
- Kein Screening: 18,686 J.
- Koloskopie: 18,748 J.
- CTC Cotton*: 18,731 J.
- CTC base case*: 18,741 J.
- CTC Pickhardt*: 18,747 J.

Inkrementelle Kostenwirksamkeit:
- Gegenüber kein Screening:
 - Koloskopie: 18.800 USD
 - CTC Cotton*: 3.800 USD
 - CTC base case*: 28.700 USD
 - CTC Pickhardt*: 26.600 USD
- CTC base case*: gegenüber
 - CTC Cotton*: 6.100 USD
- CTC Pickhardt*: gegenüber
 - CTC Cotton*: 5.400 USD
 - CTC base case*: 4.100 USD
- Koloskopie dominant gegenüber allen CTC-Alternativen
Effektivität und Effizienz der CT-Koloskopie im Vergleich zur konventionellen Koloskopie in der Darmkrebsdiagnose und -früherkennung

Fortsetzung Tabelle 52: Ladabaum et al. 2004

<table>
<thead>
<tr>
<th>Ergebnisse Sensitivitätsanalyse</th>
<th>Einflussreiche Parameter:</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTC Pickhardt<sup>5</sup> gegenüber Koloskopie:</td>
<td>• Untersuchungskosten der CTC im Vergleich zur Koloskopie</td>
</tr>
<tr>
<td>o Wird dominiert, auch wenn Spezifität von 80 % auf 95 % erhöht wird</td>
<td>• Sensitivität der Folgekoloskopie</td>
</tr>
<tr>
<td>o 133.000 USD, wenn Sensitivität der direkten Follow-up-Koloskopie für alle Polypen 100 %</td>
<td>• Compliance</td>
</tr>
<tr>
<td>o 367.000 USD, wenn Koloskopie die Lebensqualität für zwei Tage halbiert (und CTC nicht)</td>
<td>Inkrementelle Kostenwirksamkeit:</td>
</tr>
<tr>
<td>o 266.000 USD, wenn Koloskopie zusätzlich zum vorhergehenden Punkt indirekte Kosten von zwei Werktagen verursacht, CTC einen Ausfall von 0,5 Werktagen</td>
<td>• CTC Pickhardt<sup>5</sup> gegenüber Koloskopie:</td>
</tr>
<tr>
<td>o 100.000 USD bei Compliance zu Koloskopie von 50 % und zu CTC von 56 %</td>
<td>o Wird dominiert, auch wenn Kosten CTC um 40 % (24 %) reduziert werden</td>
</tr>
</tbody>
</table>

| Koloskopie gegenüber CTC Pickhardt⁵: | o 233.000 USD (0 USD), wenn Kosten CTC um 40 % (24 %) reduziert werden |
| o Dominanz bleibt bestehen bei Screening in Gruppen mit höherem Risiko |

| Schlussfolgerungen/(Autoren) | Zu den jüngsten sehr guten Werten zur Erkennungsgüte (Pickhard et al.²⁵³) muss sich in der Praxis erst zeigen, ob sie wiederholt produzierbar sind. Auch bei optimaler Erkennungsgüte müsste die CTC für die Eignung als Screeningtest außerdem 25 bis 40 % weniger als die konventionelle Koloskopie kosten. |

¹ Die Tabelle gibt nur die Ergebnisse und Annahmen zur ersten Fragestellung wieder.
² Kosten der CTC den Kosten der Koloskopie gleichgesetzt.
³ Basierend auf Cotton et al. 2004⁶⁰.
⁴ Basierend auf verschiedenen Literaturquellen („in the midrange of published values“).
⁵ Basierend auf Pickhard et al. 2003³⁵.

Quelle: Ladabaum et al. 2004, ÖBIG-FP-eigene Darstellung
9 Danksagung

Verschiedene Personen haben das Autorenteam bei der Erstellung dieses HTA-Berichts unterstützt:
Das DAHTA@DIMDI-Team hat Hinweise zur Berichtsstruktur geliefert und bei der Literatursuche und -bestellung sowie in organisatorischen Belangen mitgewirkt.
Mit Auskünften zu Fragen der Erstattung in Deutschland war Frau Dr. Katja Matthias vom AOK Bundesverband behilflich.

Seit Einrichtung der Deutschen Agentur für HTA des DIMDI (DAHTA@DIMDI) im Jahr 2000 gehören die Entwicklung und Bereitstellung von Informationssystemen, speziellen Datenbanken und HTA-Berichten zu den Aufgaben des DIMDI.

Im Rahmen der Forschungsförderung beauftragt das DIMDI qualifizierte Wissenschaftler mit der Erstellung von HTA-Berichten, die Aussagen machen zu Nutzen, Risiko, Kosten und Auswirkungen medizinischer Verfahren und Technologien mit Bezug zur gesundheitlichen Versorgung der Bevölkerung. Dabei fallen unter den Begriff Technologie sowohl Medikamente als auch Instrumente, Geräte, Prozeduren, Verfahren sowie Organisationsstrukturen. Vorrang haben dabei Themen, für die gesundheitspolitischer Entscheidungsbedarf besteht.